Local structured representation for generic object detection

被引:2
|
作者
Zhang, Junge [1 ,3 ]
Huang, Kaiqi [1 ,2 ,3 ]
Tan, Tieniu [1 ,2 ,3 ]
Zhang, Zhaoxiang [2 ,3 ]
机构
[1] Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Local Structured Descriptor; Local Structured Model; Object Representation; Object Structure; Object Detection; PASCAL VOC; SCALE; CLASSIFICATION; RECOGNITION; GRADIENTS; FEATURES;
D O I
10.1007/s11704-016-5530-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object's local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
引用
收藏
页码:632 / 648
页数:17
相关论文
共 50 条
  • [31] Object Detection Based on Improved Exemplar SVMs Using a Generic Object Measure
    Chen, Hao
    Zhang, Shanshan
    Yang, Jinfu
    Zhang, Qiang
    INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 1, 2017, 454 : 243 - 251
  • [32] A Training-Free Approach for Generic Object Detection
    Baheti, Bhakti, V
    Talbar, Sanjay N.
    Gajre, Suhas S.
    IETE JOURNAL OF RESEARCH, 2022, 68 (01) : 482 - 495
  • [33] A Fine Granularity Object-Level Representation for Event Detection and Recounting
    Zhang, Hao
    Ngo, Chong-Wah
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (06) : 1450 - 1463
  • [34] Exploring Deep Learning-Based Architecture, Strategies, Applications and Current Trends in Generic Object Detection: A Comprehensive Review
    Aziz, Lubna
    Haji Salam, Md. Sah Bin
    Sheikh, Usman Ullah
    Ayub, Sara
    IEEE ACCESS, 2020, 8 : 170461 - 170495
  • [35] LOCAL FEATURE BASED SUPERVISED OBJECT DETECTION: SAMPLING, LEARNING AND DETECTION STRATEGIES
    Michel, J.
    Grizonnet, M.
    Inglada, J.
    Malik, J.
    Bricier, A.
    Lahlou, O.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2381 - 2384
  • [36] Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels
    Seo, Hae Jong
    Milanfar, Peyman
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1688 - 1704
  • [37] An Effective Local Feature Descriptor for Object Detection in Real Scenes
    Nigam, Swati
    Khare, Manish
    Srivastava, Rajneesh Kumar
    Khare, Ashish
    2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT 2013), 2013, : 244 - 248
  • [38] BOOSTED LOCAL BINARIES FOR OBJECT DETECTION
    Ren, Haoyu
    Li, Ze-Nian
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [39] A detection method for low-pixel ratio object
    Zhang, Rui
    Yin, Dong
    Ding, Jinwen
    Luo, Yuhao
    Liu, Wei
    Yuan, Mingyue
    Zhu, Chengfeng
    Zhou, Zhipeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 11655 - 11674
  • [40] Structured Knowledge Distillation for Accurate and Efficient Object Detection
    Zhang, Linfeng
    Ma, Kaisheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15706 - 15724