Local structured representation for generic object detection

被引:2
|
作者
Zhang, Junge [1 ,3 ]
Huang, Kaiqi [1 ,2 ,3 ]
Tan, Tieniu [1 ,2 ,3 ]
Zhang, Zhaoxiang [2 ,3 ]
机构
[1] Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Local Structured Descriptor; Local Structured Model; Object Representation; Object Structure; Object Detection; PASCAL VOC; SCALE; CLASSIFICATION; RECOGNITION; GRADIENTS; FEATURES;
D O I
10.1007/s11704-016-5530-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object's local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
引用
收藏
页码:632 / 648
页数:17
相关论文
共 50 条
  • [21] Circle Representation for Medical Object Detection
    Nguyen, Ethan H.
    Yang, Haichun
    Deng, Ruining
    Lu, Yuzhe
    Zhu, Zheyu
    Roland, Joseph T.
    Lu, Le
    Landman, Bennett A.
    Fogo, Agnes B.
    Huo, Yuankai
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (03) : 746 - 754
  • [22] A review of object representation based on local features
    Cao, Jian
    Mao, Dian-hui
    Cai, Qiang
    Li, Hai-sheng
    Du, Jun-ping
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (07): : 495 - 504
  • [23] Deep Learning for Object Detection: A Survey
    Wang, Jun
    Zhang, Tingjuan
    Cheng, Yong
    Al-Nabhan, Najla
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 38 (02): : 165 - 182
  • [24] REPRESENTATION RECONSTRUCTION HEAD FOR OBJECT DETECTION
    Miao, Shuyu
    Feng, Rui
    Zhang, Yuejie
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1516 - 1520
  • [25] Object Detection in Traffic Videos: A Survey
    Ghahremannezhad, Hadi
    Shi, Hang
    Liu, Chengjun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (07) : 6780 - 6799
  • [26] Gaussian Combined Distance: A Generic Metric for Object Detection
    Guan, Ziqian
    Fu, Xieyi
    Huang, Pengjun
    Zhang, Hengyuan
    Du, Hubin
    Liu, Yongtao
    Wang, Yinglin
    Ma, Qang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [27] Generic Object Detection Using Improved Gentleboost Classifier
    Guo, Li
    Liao, Yu
    Luo, Daisheng
    Liao, Honghua
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1528 - 1535
  • [28] Toward Generic and Controllable Attacks Against Object Detection
    Li, Guopeng
    Xu, Yue
    Ding, Jian
    Xia, Gui-Song
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [29] On structuring multiple grouping hypotheses in generic object detection
    Villeneuve, Guillaume
    Bergevin, Robert
    2013 INTERNATIONAL CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2013, : 340 - 347
  • [30] Similarity and structured representation in human and nonhuman apes
    Hodgetts, Carl J.
    Close, James O. E.
    Hahn, Ulrike
    COGNITION, 2023, 236