Local structured representation for generic object detection

被引:2
|
作者
Zhang, Junge [1 ,3 ]
Huang, Kaiqi [1 ,2 ,3 ]
Tan, Tieniu [1 ,2 ,3 ]
Zhang, Zhaoxiang [2 ,3 ]
机构
[1] Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Local Structured Descriptor; Local Structured Model; Object Representation; Object Structure; Object Detection; PASCAL VOC; SCALE; CLASSIFICATION; RECOGNITION; GRADIENTS; FEATURES;
D O I
10.1007/s11704-016-5530-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object's local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
引用
收藏
页码:632 / 648
页数:17
相关论文
共 50 条
  • [1] Local structured representation for generic object detection
    Junge Zhang
    Kaiqi Huang
    Tieniu Tan
    Zhaoxiang Zhang
    Frontiers of Computer Science, 2017, 11 : 632 - 648
  • [2] Deep Learning for Generic Object Detection: A Survey
    Liu, Li
    Ouyang, Wanli
    Wang, Xiaogang
    Fieguth, Paul
    Chen, Jie
    Liu, Xinwang
    Pietikainen, Matti
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) : 261 - 318
  • [3] Regionlets for Generic Object Detection
    Wang, Xiaoyu
    Yang, Ming
    Zhu, Shenghuo
    Lin, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (10) : 2071 - 2084
  • [4] Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection
    Xu, Hongyu
    Lv, Xutao
    Wang, Xiaoyu
    Ren, Zhou
    Bodla, Navaneeth
    Chellappa, Rama
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (06) : 1914 - 1927
  • [5] BPJDet: Extended Object Representation for Generic Body-Part Joint Detection
    Zhou, Huayi
    Jiang, Fei
    Si, Jiaxin
    Ding, Yue
    Lu, Hongtao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (06) : 4314 - 4330
  • [6] Accurate object detection using local shape descriptors
    Anvaripour, Mohammad
    Ebrahimnezhad, Hossein
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 277 - 295
  • [7] Feature representation for statistical-learning-based object detection: A review
    Li, Yali
    Wang, Shengjin
    Tian, Qi
    Ding, Xiaoqing
    PATTERN RECOGNITION, 2015, 48 (11) : 3542 - 3559
  • [8] Visual Object Categorization via Sparse Representation
    Fu, Huanzhang
    Zhu, Chao
    Dellandrea, Emmanuel
    Bichot, Charles-Edmond
    Chen, Liming
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 943 - 948
  • [9] Local Metric Learning for Exemplar-Based Object Detection
    You, Xinge
    Li, Qiang
    Tao, Dacheng
    Ou, Weihua
    Gong, Mingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (08) : 1265 - 1276
  • [10] Local Keypoint-Based Image Detector with Object Detection
    Grycuk, Rafal
    Scherer, Magdalena
    Voloshynovskiy, Sviatoslav
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 507 - 517