Exact height distributions for the KPZ equation with narrow wedge initial condition

被引:135
作者
Sasamoto, Tomohiro [3 ]
Spohn, Herbert [1 ,2 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[2] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[3] Chiba Univ, Dept Math & Informat, Chiba 2638522, Japan
关键词
ASYMMETRIC EXCLUSION PROCESSES; RANDOM MATRICES;
D O I
10.1016/j.nuclphysb.2010.03.026
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the KPZ equation in one space dimension with narrow wedge initial condition, h(x, t = 0) = -vertical bar x vertical bar/delta, delta << 1, evolving into a parabolic profile with superimposed fluctuations. Based on previous results for the weakly asymmetric simple exclusion process with step initial conditions, we obtain a determinantal formula for the one-point distribution of the solution h(x, t) valid for any x and t > 0. The corresponding distribution function converges in the long time limit, t -> infinity, to the Tracy-Widom distribution. The first order correction is a shift of order t(-1/3). We provide numerical computations based on the exact formula. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:523 / 542
页数:20
相关论文
共 24 条
  • [1] AMIR G, 2010, ARXIV10030443
  • [2] [Anonymous], STAT MECH FIELDS
  • [3] BALAZS M, 2009, ARXIV09094816
  • [4] Stochastic burgers and KPZ equations from particle systems
    Bertini, L
    Giacomin, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) : 571 - 607
  • [5] BORNEMANN F, 2009, MATH COMP
  • [6] CALABRESE P, 2010, ARXIV10024560
  • [7] DEMASI A, 1989, ANN I H POINCARE-PR, V25, P1
  • [8] A CENTRAL-LIMIT-THEOREM FOR THE WEAKLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
    DITTRICH, P
    GARTNER, J
    [J]. MATHEMATISCHE NACHRICHTEN, 1991, 151 : 75 - 93
  • [9] DOTSENKO V, 2010, ARXIV10034899
  • [10] GARTNER J, 1988, STOCH PROC APPL, V27, P233