Rose window graphs underlying rotary maps

被引:12
作者
Kovacs, Istvan [1 ]
Kutnar, Klavdija [1 ]
Janos Ruff [2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Pecs, MII, H-6722 Pecs, Hungary
关键词
Rotary map; Edge-transitive graph; Covering graph; Voltage graph; REGULAR MAPS; COVERINGS;
D O I
10.1016/j.disc.2009.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given natural numbers n >= 3 and 1 <= a, r <= n - 1, the rose window graph R(n)(a, r) is a quartic graph with vertex set {x(i) vertical bar i is an element of Z(n)) boolean OR {y(i) vertical bar i is an element of Z(n)} and edge set {{x(i), x(i+1)} vertical bar i is an element of Z(n)} boolean OR {{y(i), y(i+r)} vertical bar i is an element of Z(n)} boolean OR {{x(i), y(i)} vertical bar i is an element of z(n)} boolean OR vertical bar i is an element of z(n)}. In this paper rotary maps on rose window graphs are considered. In particular, we answer the question posed in [S. Wilson, Rose window graphs, Ars Math. Contemp. 1 (2008), 7-19. http://amc.imfm.si/index.php/amc/issue/view/5] concerning which of these graphs underlie a rotary map. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:1802 / 1811
页数:10
相关论文
共 14 条
[11]   Consistent cycles in graphs and digraphs [J].
Miklavic, Stefko ;
Potocnik, Primoz ;
Wilson, Steve .
GRAPHS AND COMBINATORICS, 2007, 23 (02) :205-216
[12]  
Potocnik P., CENSUS EDGE TRANSITI
[13]   OPERATORS OVER REGULAR MAPS [J].
WILSON, SE .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 81 (02) :559-568
[14]   Rose Window Graphs [J].
Wilson, Steve .
ARS MATHEMATICA CONTEMPORANEA, 2008, 1 (01) :7-19