Rose window graphs underlying rotary maps

被引:12
作者
Kovacs, Istvan [1 ]
Kutnar, Klavdija [1 ]
Janos Ruff [2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Pecs, MII, H-6722 Pecs, Hungary
关键词
Rotary map; Edge-transitive graph; Covering graph; Voltage graph; REGULAR MAPS; COVERINGS;
D O I
10.1016/j.disc.2009.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given natural numbers n >= 3 and 1 <= a, r <= n - 1, the rose window graph R(n)(a, r) is a quartic graph with vertex set {x(i) vertical bar i is an element of Z(n)) boolean OR {y(i) vertical bar i is an element of Z(n)} and edge set {{x(i), x(i+1)} vertical bar i is an element of Z(n)} boolean OR {{y(i), y(i+r)} vertical bar i is an element of Z(n)} boolean OR {{x(i), y(i)} vertical bar i is an element of z(n)} boolean OR vertical bar i is an element of z(n)}. In this paper rotary maps on rose window graphs are considered. In particular, we answer the question posed in [S. Wilson, Rose window graphs, Ars Math. Contemp. 1 (2008), 7-19. http://amc.imfm.si/index.php/amc/issue/view/5] concerning which of these graphs underlie a rotary map. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:1802 / 1811
页数:10
相关论文
共 14 条
[1]  
Biggs N., 1978, C MATH SOC JANOS BOL, V25, P27
[2]  
Biggs N.L., 1979, PERMUTATION GROUPS C, V1st
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
CONWAY JH, 1971, 2 BRIT COMB C ROYAL
[5]  
Dixon J. D., 1996, Graduate Text in Mathematics, V163
[6]   Characterisation of graphs which underlie regular maps on closed surfaces [J].
Gardiner, A ;
Nedela, R ;
Sirán, J ;
Skoviera, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :100-108
[7]   GENERATING ALL GRAPH COVERINGS BY PERMUTATION VOLTAGE ASSIGNMENTS [J].
GROSS, JL ;
TUCKER, TW .
DISCRETE MATHEMATICS, 1977, 18 (03) :273-283
[8]   Classification of Edge-Transitive Rose Window Graphs [J].
Kovacs, Istvan ;
Kutnar, Klavdija ;
Marusic, Dragan .
JOURNAL OF GRAPH THEORY, 2010, 65 (03) :216-231
[9]   Elementary Abelian covers of graphs [J].
Malnic, A ;
Marusic, D ;
Potocnik, P .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 20 (01) :71-97
[10]   Group actions, coverings and lifts of automorphisms [J].
Malnic, A .
DISCRETE MATHEMATICS, 1998, 182 (1-3) :203-218