Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation

被引:68
作者
Zhang, Yongshuai [1 ]
Cheng, Yi [1 ]
He, Jingsong [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
Riemann-Hilbert problem; vector Gerdjikov-Ivanov equation; asymptotic analysis; soliton; KORTEWEG-DEVRIES EQUATION; DARBOUX TRANSFORMATION;
D O I
10.1080/14029251.2017.1313475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Riemann-Hilbert method for initial problem of the vector Gerdjikov-Ivanov equation, and obtain the formula for its N-soliton solution, which is expressed as a ratio of (N+1) x (N+1) determinant and N x N determinant. Furthermore, by applying asymptotic analysis, the simple elastic interactions of N-soliton are confirmed, and the shifts of phase and position are also explicitly displayed.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 26 条
[1]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Ablowitz M.J., 2003, Complex Variables
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]  
[Anonymous], 2007, NONLINEAR FIBER OPTI
[5]  
[Anonymous], 1974, Sov. Phys. JETP
[6]   Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation [J].
Dai, HH ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :93-101
[7]   Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39) :6925-6933
[8]   Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation [J].
Fan, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7769-7782
[9]  
Fokas A.S., 2008, CBMS-NSF Regional Conference Series in Applied Mathematics, V78
[10]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133