RETRACTED: Chaos Synchronization of the Distributed-Order Lorenz System via Active Control and Applications in Chaotic Masking (Retracted article. See vol. 28, 2018)

被引:18
作者
Chen, Jiyang [1 ]
Li, Chuandong [1 ]
Yang, Xujun [1 ]
机构
[1] Southwest Univ, Natl & Local Joint Engn Lab Intelligent Transmiss, Chongqing 400715, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 10期
基金
中国国家自然科学基金;
关键词
Chaos; synchronization; distributed order; active control; Lorenz system; chaotic masking; ADAPTIVE SYNCHRONIZATION; SECURE COMMUNICATION; MODULATION;
D O I
10.1142/S0218127418501213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different from previous works on chaotic synchronization of fractional-order system, this paper discusses the chaotic synchronization of Lorenz system with distributed order. The main idea is that we transform the distributed-order Lorenz system in the time domain into the frequency domain by Laplace transformation, and then, based on the final-value theorem, two main theorems and the designed controllers, the chaotic synchronization between the distributed-order Lorenz drive system and response system is obtained. Finally, numerical simulations and applications in chaotic masking are presented to verify reliability of the obtained results.
引用
收藏
页数:14
相关论文
共 42 条
  • [1] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [2] Bagley R., 2000, INT J APPL MATH, V2, P965
  • [3] Bagley R. L., 2000, Int. J. Appl. Math, V2, P865
  • [4] Secure communication via multiple parameter modulation in a delayed chaotic system
    Bai, EW
    Lonngren, KE
    Uçar, A
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (03) : 1071 - 1076
  • [5] Sequential synchronization of two Lorenz systems using active control
    Bai, EW
    Lonngren, KE
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (07) : 1041 - 1044
  • [6] Synchronization of different fractional order chaotic systems using active control
    Bhalekar, Sachin
    Daftardar-Gejji, Varsha
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3536 - 3546
  • [7] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [8] Synchronization of uncertain chaotic systems via backstepping approach
    Bowong, S
    Kakmeni, FMM
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 999 - 1011
  • [9] Caputo M., 1995, Ann. Univ. Ferrara., V41, P73, DOI 10.1007/BF02826009
  • [10] Caputo M, 2001, Fract Calc Appl Anal, V4, P421