A least-squares finite element scheme for the EW equation

被引:54
作者
Zaki, SI [1 ]
机构
[1] Suez Canal Univ, Dept Math, Ismailia, Egypt
关键词
RLW equation; finite element methods; Petrov-Galerkin;
D O I
10.1016/S0045-7825(99)00312-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The equal width (EW) equation is solved by a least-squares technique using linear space-time finite elements. In simulations of the migration of a single solitary wave this algorithm is shown to have good accuracy and conservation. The development of solitary waves from an arbitrary initial condition within an EW environment is examined. (C) 2000 Elsevier Science S.A. All rights reserved. IDT: 35Q20; 65N30; 65N35; 761325.
引用
收藏
页码:587 / 594
页数:8
相关论文
共 12 条
[1]   NUMERICAL SCHEMES FOR A MODEL FOR NONLINEAR DISPERSIVE WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :167-186
[2]   The boundary-forced regularised long-wave equation. [J].
Gardner, LRT ;
Dag, I .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (12) :1487-1496
[3]   SOLITARY WAVES OF THE EQUAL WIDTH WAVE-EQUATION [J].
GARDNER, LRT ;
GARDNER, GA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (01) :218-223
[4]   SOLITARY WAVES OF THE REGULARIZED LONG-WAVE EQUATION [J].
GARDNER, LRT ;
GARDNER, GA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 91 (02) :441-459
[5]  
Gardner LRT, 1997, COMMUN NUMER METH EN, V13, P583, DOI 10.1002/(SICI)1099-0887(199707)13:7<583::AID-CNM90>3.0.CO
[6]  
2-E
[7]   SCATTERING OF REGULARIZED-LONG-WAVE SOLITARY WAVES [J].
MORRISON, PJ ;
MEISS, JD ;
CARY, JR .
PHYSICA D, 1984, 11 (03) :324-336
[8]  
NGUYEN N, 1981, COMPUT METHODS APPL, V42, P331
[9]  
NGUYEN N, 1982, NUMERICAL METHODS NO, V2, P178