Preparation and characterization of nanocrystalline Ce0.8Sm0.2O1.9 for low temperature solid oxide fuel cells based on composite electrolyte

被引:61
|
作者
Gao, Zhan [1 ]
Huang, Jianbing [1 ]
Mao, Zongqiang [1 ]
Wang, Cheng [1 ]
Liu, Zhixiang [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cells (SOFCs); Ce0.8Sm0.2O1.9 (SDC); Composite electrolyte; DOPED CERIA; PERFORMANCE; CATHODES; POWDERS; SOFCS;
D O I
10.1016/j.ijhydene.2009.10.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline Ce0.8Sm0.2O1.9 (SDC) has been synthesized by a combined EDTA-citrate complexing sol-gel process for low temperature solid oxide fuel cells (SOFCs) based on composite electrolyte. A range of techniques including X-ray diffraction (XRD), and electron microscopy (SEM and TEM) have been employed to characterize the SDC and the composite electrolyte. The influence of pH values and citric acid-to-metal ions ratios (C/M) on lattice constant, crystallite size and conductivity has been investigated. Composite electrolyte consisting of SDC derived from different synthesis conditions and binary carbonates (Li2CO3-Na2CO3) has been prepared and conduction mechanism is discussed. Water was observed on both anode and cathode side during the fuel cell operation, indicating the composite electrolyte is co-ionic conductor possessing H+ and O2- conduction. The variation of composite electrolyte conductivity and fuel cell power output with different synthesis conditions was in accordance with that of the SDC originated from different precursors, demonstrating O2- conduction is predominant in the conduction process. A maximum power density of 817 mW cm(-2) at 600 degrees C and 605 mW cm(-2) at 500 degrees C was achieved for fuel cell based on composite electrolyte. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:731 / 737
页数:7
相关论文
共 50 条
  • [1] Composite electrolyte based on nanostructured Ce0.8Sm0.2O1.9 (SDC) for low-temperature solid oxide fuel cells
    Gao, Zhan
    Mao, Zongqiang
    Wang, Cheng
    Huang, Jianbing
    Liu, Zhixiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2009, 33 (13) : 1138 - 1144
  • [2] Preparation and characterization of Ce0.8La0.2-xYxO1.9 as electrolyte for solid oxide fuel cells
    Tian Changan
    Ji Bifa
    Xie Jinsong
    Bao Weitao
    Liu Ke
    Cheng Jihai
    Yin Qiyi
    JOURNAL OF RARE EARTHS, 2014, 32 (12) : 1162 - 1169
  • [3] Effects of Bi2O3 doping on structural and electrical properties of Ce0.8Sm0.2O1.9 electrolyte for solid oxide fuel cells
    Tian, Changan
    Zhu, Minzheng
    Qu, Xiaoling
    Liu, Yang
    Wang, Cao
    He, Tusheng
    Chen, Chao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (01):
  • [4] Ce0.8Sm0.2O1.9 decorated with electron-blocking acceptor-doped BaCeO3 as electrolyte for low-temperature solid oxide fuel cells
    Gong, Zheng
    Sun, Wenping
    Cao, Jiafeng
    Shan, Duo
    Wu, Yusen
    Liu, Wei
    ELECTROCHIMICA ACTA, 2017, 228 : 226 - 232
  • [5] Preparation of Porous NiO-Ce0.8Sm0.2O1.9 Ceramics for Anode-supported Low-temperature Solid Oxide Fuel Cells
    Chen, Han
    Cheng, Kui
    Wang, Zhicheng
    Weng, Wenjian
    Shen, Ge
    Du, Piyi
    Han, Gaorong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (06) : 523 - 528
  • [6] Preparation and characterization of Sm0.2Ce0.8O1.9/Na2CO3 nanocomposite electrolyte for low-temperature solid oxide fuel cells
    Gao, Zhan
    Raza, Rizwan
    Zhu, Bin
    Mao, Zongqiang
    Wang, Cheng
    Liu, Zhixiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (06) : 3984 - 3988
  • [7] Ce0.8Sm0.2O1.9 synthesis for solid oxide fuel cell electrolyte by ultrasound assisted co-precipitation method
    Okkay, Hikmet
    Bayramoglu, Mahmut
    Oksuzomer, M. Faruk
    ULTRASONICS SONOCHEMISTRY, 2013, 20 (03) : 978 - 983
  • [8] Low-temperature co-sintering of co-ionic conducting solid oxide fuel cells based on Ce0.8Sm0.2O1.9-BaCe0.8Sm0.2O2.9 composite electrolyte
    Tian, Dong
    Liu, Wei
    Chen, Yonghong
    Gu, Qinwen
    Lin, Bin
    IONICS, 2015, 21 (03) : 823 - 828
  • [9] Phase formation and properties of composite electrolyte BaCe0.8Y0.2O3-δ-Ce0.8Gd0.2O1.9 for intermediate temperature solid oxide fuel cells
    Lin, Dong
    Wang, Qunhao
    Peng, Kaiping
    Shaw, Leon L.
    JOURNAL OF POWER SOURCES, 2012, 205 : 100 - 107
  • [10] Fabrication and Characterization of Ce0.8Sm0.2O1.9 Microtubular Dual-Structured Electrolyte Membranes for Application in Solid Oxide Fuel Cell Technology
    Yang, Naitao
    Tan, Xiaoyao
    Ma, Zifeng
    Thursfield, Alan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (11) : 2544 - 2550