Globally rising soil heterotrophic respiration over recent decades

被引:413
作者
Bond-Lamberty, Ben [1 ]
Bailey, Vanessa L. [2 ]
Chen, Min [1 ]
Gough, Christopher M. [3 ]
Vargas, Rodrigo [4 ]
机构
[1] Univ Maryland, Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD 20742 USA
[2] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA USA
[3] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA
[4] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19717 USA
基金
美国国家科学基金会;
关键词
GROSS PRIMARY PRODUCTION; CARBON-CYCLE; CHLOROPHYLL FLUORESCENCE; TERRESTRIAL GROSS; TEMPERATURE; FOREST; SENSITIVITY; COMPONENTS; INCREASES; SATELLITE;
D O I
10.1038/s41586-018-0358-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Global soils store at least twice as much carbon as Earth's atmosphere(1,2). The global soil-to-atmosphere (or total soil respiration, R-S) carbon dioxide (CO2) flux is increasing(3,4), but the degree to which climate change will stimulate carbon losses from soils as a result of heterotrophic respiration (R-H) remains highly uncertain(5-8). Here we use an updated global soil respiration database(9) to show that the observed soil surface R-H:R-S ratio increased significantly, from 0.54 to 0.63, between 1990 and 2014 (P = 0.009). Three additional lines of evidence provide support for this finding. By analysing two separate global gross primary production datasets(10,11), we find that the ratios of both R-H and R-S to gross primary production have increased over time. Similarly, significant increases in R-H are observed against the longest available solar-induced chlorophyll fluorescence global dataset, as well as gross primary production computed by an ensemble of global land models. We also show that the ratio of night-time net ecosystem exchange to gross primary production is rising across the FLUXNET2015(12) dataset. All trends are robust to sampling variability in ecosystem type, disturbance, methodology, CO2 fertilization effects and mean climate. Taken together, our findings provide observational evidence that global R-H is rising, probably in response to environmental changes, consistent with metaanalyses(13-16) and long-term experiments(17). This suggests that climate-driven losses of soil carbon are currently occurring across many ecosystems, with a detectable and sustained trend emerging at the global scale.
引用
收藏
页码:80 / +
页数:16
相关论文
共 46 条
  • [1] Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil
    Adamczyk, Sylwia
    Adamczyk, Bartosz
    Kitunen, Veikko
    Smolander, Aino
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2015, 87 : 59 - 66
  • [2] Spatiotemporal patterns of terrestrial gross primary production: A review
    Anav, Alessandro
    Friedlingstein, Pierre
    Beer, Christian
    Ciais, Philippe
    Harper, Anna
    Jones, Chris
    Murray-Tortarolo, Guillermo
    Papale, Dario
    Parazoo, Nicholas C.
    Peylin, Philippe
    Piao, Shilong
    Sitch, Stephen
    Viovy, Nicolas
    Wiltshire, Andy
    Zhao, Maosheng
    [J]. REVIEWS OF GEOPHYSICS, 2015, 53 (03) : 785 - 818
  • [3] [Anonymous], 2013, ATMOS MEAS TECH, DOI DOI 10.5194/AMT-6-207-2013
  • [4] Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems
    Baldocchi, Dennis
    [J]. AUSTRALIAN JOURNAL OF BOTANY, 2008, 56 (01) : 1 - 26
  • [5] A global relationship between the heterotrophic and autotrophic components of soil respiration?
    Bond-Lamberty, B
    Wang, CK
    Gower, ST
    [J]. GLOBAL CHANGE BIOLOGY, 2004, 10 (10) : 1756 - 1766
  • [6] A global database of soil respiration data
    Bond-Lamberty, B.
    Thomson, A.
    [J]. BIOGEOSCIENCES, 2010, 7 (06) : 1915 - 1926
  • [7] Temperature-associated increases in the global soil respiration record
    Bond-Lamberty, Ben
    Thomson, Allison
    [J]. NATURE, 2010, 464 (7288) : 579 - U132
  • [8] Reconciling carbon-cycle concepts, terminology, and methods
    Chapin, F. S., III
    Woodwell, G. M.
    Randerson, J. T.
    Rastetter, E. B.
    Lovett, G. M.
    Baldocchi, D. D.
    Clark, D. A.
    Harmon, M. E.
    Schimel, D. S.
    Valentini, R.
    Wirth, C.
    Aber, J. D.
    Cole, J. J.
    Goulden, M. L.
    Harden, J. W.
    Heimann, M.
    Howarth, R. W.
    Matson, P. A.
    McGuire, A. D.
    Melillo, J. M.
    Mooney, H. A.
    Neff, J. C.
    Houghton, R. A.
    Pace, M. L.
    Ryan, M. G.
    Running, S. W.
    Sala, O. E.
    Schlesinger, W. H.
    Schulze, E. -D.
    [J]. ECOSYSTEMS, 2006, 9 (07) : 1041 - 1050
  • [9] Quantifying global soil carbon losses in response to warming
    Crowther, T. W.
    Todd-Brown, K. E. O.
    Rowe, C. W.
    Wieder, W. R.
    Carey, J. C.
    Machmuller, M. B.
    Snoek, B. L.
    Fang, S.
    Zhou, G.
    Allison, S. D.
    Blair, J. M.
    Bridgham, S. D.
    Burton, A. J.
    Carrillo, Y.
    Reich, P. B.
    Clark, J. S.
    Classen, A. T.
    Dijkstra, F. A.
    Elberling, B.
    Emmett, B. A.
    Estiarte, M.
    Frey, S. D.
    Guo, J.
    Harte, J.
    Jiang, L.
    Johnson, B. R.
    Kroel-Dulay, G.
    Larsen, K. S.
    Laudon, H.
    Lavallee, J. M.
    Luo, Y.
    Lupascu, M.
    Ma, L. N.
    Marhan, S.
    Michelsen, A.
    Mohan, J.
    Niu, S.
    Pendall, E.
    Penuelas, J.
    Pfeifer-Meister, L.
    Poll, C.
    Reinsch, S.
    Reynolds, L. L.
    Schmidt, I. K.
    Sistla, S.
    Sokol, N. W.
    Templer, P. H.
    Treseder, K. K.
    Welker, J. M.
    Bradford, M. A.
    [J]. NATURE, 2016, 540 (7631) : 104 - +
  • [10] Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
    Davidson, EA
    Janssens, IA
    [J]. NATURE, 2006, 440 (7081) : 165 - 173