Chaos in the Bose-glass phase of a one-dimensional disordered Bose fluid

被引:5
作者
Daviet, Romain [1 ]
Dupuis, Nicolas [1 ]
机构
[1] Sorbonne Univ, CNRS, Lab Phys Theor Matiere Condensee, LPTMC, F-75005 Paris, France
关键词
RENORMALIZATION-GROUP; LOCALIZATION; FLOW; BEHAVIOR; MODELS;
D O I
10.1103/PhysRevE.103.052136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the Bose-glass phase of a one-dimensional disordered Bose fluid exhibits a chaotic behavior, i.e., an extreme sensitivity to external parameters. Using bosonization, the replica formalism and the nonperturbative functional renormalization group, we find that the ground state is unstable to any modification of the disorder configuration ("disorder" chaos) or variation of the Luttinger parameter ("quantum" chaos, analog to the "temperature" chaos in classical disordered systems). This result is obtained by considering two copies of the system, with slightly different disorder configurations or Luttinger parameters, and showing that intercopy statistical correlations are suppressed at length scales larger than an overlap length xi(ov) similar to vertical bar epsilon vertical bar(-1/alpha) (vertical bar epsilon vertical bar << 1 is a measure of the difference between the disorder distributions or Luttinger parameters of the two copies). The chaos exponent alpha can be obtained by computing xi(ov) or by studying the instability of the Bose-glass fixed point for the two-copy system when epsilon not equal 0. The renormalized, functional, intercopy disorder correlator departs from its fixed-point value-characterized by "cuspy" singularities-via a chaos boundary layer, in the same way as it approaches the Bose-glass fixed point when epsilon = 0 through a quantum boundary layer. Performing a linear analysis of perturbations about the Bose-glass fixed point, we find alpha = 1.
引用
收藏
页数:11
相关论文
共 34 条
[1]   The large scale energy landscape of randomly pinned objects [J].
Balents, L ;
Bouchaud, JP ;
Mezard, M .
JOURNAL DE PHYSIQUE I, 1996, 6 (08) :1007-1020
[2]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[3]   CHAOTIC NATURE OF THE SPIN-GLASS PHASE [J].
BRAY, AJ ;
MOORE, MA .
PHYSICAL REVIEW LETTERS, 1987, 58 (01) :57-60
[4]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[5]   Mott-Glass Phase of a One-Dimensional Quantum Fluid with Long-Range Interactions [J].
Daviet, Romain ;
Dupuis, Nicolas .
PHYSICAL REVIEW LETTERS, 2020, 125 (23)
[6]  
Delamotte B, 2012, LECT NOTES PHYS, V852, P49, DOI 10.1007/978-3-642-27320-9_2
[7]  
Duemmer O., ARXIV07091378
[8]   The nonperturbative functional renormalization group and its applications [J].
Dupuis, N. ;
Canet, L. ;
Eichhorn, A. ;
Metzner, W. ;
Pawlowski, J. M. ;
Tissier, M. ;
Wschebor, N. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 910 :1-114
[9]   Is there a Mott-glass phase in a one-dimensional disordered quantum fluid with linearly confining interactions? [J].
Dupuis, Nicolas .
EPL, 2020, 130 (05)
[10]   Bose-glass phase of a one-dimensional disordered Bose fluid: Metastable states, quantum tunneling, and droplets [J].
Dupuis, Nicolas ;
Daviet, Romain .
PHYSICAL REVIEW E, 2020, 101 (04)