Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng

被引:178
作者
Han, Jung-Yeon [1 ]
In, Jun-Gyo [2 ]
Kwon, Yong-Soo [3 ]
Choi, Yong-Eui [1 ]
机构
[1] Kangwon Natl Univ, Coll Forest & Environm Sci, Forest Resources Div, Chunchon 200701, South Korea
[2] BioPia Res Inst, Seomyeon 339810, South Korea
[3] Kangwon Natl Univ, Coll Pharm, Chunchon 200701, South Korea
关键词
Panax ginseng; Araliaceae; Ginseng; Squalene epoxidase; Triterpene; Phytosterol; RNA interference; MOLECULAR-CLONING; TRITERPENE; PLANT; SAPONINS; STEROLS; AGENTS; ACCUMULATION; EXPRESSION; SYNTHASE; CULTURES;
D O I
10.1016/j.phytochem.2009.09.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Squalene epoxidase catalyzes the first oxygenation step in phytosterol and triterpenoid saponin biosynthesis and is suggested to represent one of the rate-limiting enzymes in this pathway. Here, we investigated the roles of two squalene epoxidase genes (PgSQE1 and PgSQE2) in triterpene and phytosterol biosynthesis in Panax ginseng. PgSQE1 and PgSQE2 encoded deduced proteins of 537 and 545 amino acids, respectively. Amino acid sequences deduced from PgSQE1 and PgSQE2 share 83% homology, but the N-terminal regions (first 60 amino acids) are highly different. PgSQE1 mRNA abundantly accumulated in all organs. PgSQE2 was only weakly expressed and preferentially in petioles and flower buds. Methyl jasmonate (MeJA) treatment enhanced the accumulation of PgSQE1 mRNA in roots, but rather suppressed expression of PgSQE2. Precursor (squalene) treatment coordinately upregulated the expression of both PgSQE1 and PgSQE2. In situ hybridization analysis established that both PgSQE1 and PgSQE2 mRNAs accumulated preferentially in vascular bundle tissue and resin ducts of petioles. RNA interference of PgSQE1 in transgenic P. ginseng completely suppressed PgSQE1 transcription. Concomitantly, the interference of PgSQE1 resulted in reduction of ginsenoside production. Interestingly, silencing of PgSQE1 in RNAi roots strongly upregulated PgSQE2 and PNX (cycloartenol synthase) and resulted in enhanced phytosterol accumulation. These results indicate that expression of PgSQE1 and PgSQE2 were regulated in a different manner, and that PgSQE1 will regulate ginsenoside biosynthesis, but not that of phytosterols in A ginseng. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 46
页数:11
相关论文
共 39 条
[1]   ENZYMATIC CYCLIZATION OF SQUALENE AND OXIDOSQUALENE TO STEROLS AND TRITERPENES [J].
ABE, I ;
ROHMER, M ;
PRESTWICH, GD .
CHEMICAL REVIEWS, 1993, 93 (06) :2189-2206
[2]   Biosynthesis and accumulation of sterols [J].
Benveniste, P .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :429-457
[3]   Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health [J].
Briskin, DP .
PLANT PHYSIOLOGY, 2000, 124 (02) :507-514
[4]   Rapid and efficient Agrobacterium-mediated transformation of Panax ginseng by plasmolyzing pre-treatment of cotyledons [J].
Choi Y.E. ;
Yang D.C. ;
Kusano T. ;
Sano H. .
Plant Cell Reports, 2001, 20 (7) :616-621
[5]   Squalene epoxidase as hypocholesterolemic drug target revisited [J].
Chugh, A ;
Ray, A ;
Gupta, JB .
PROGRESS IN LIPID RESEARCH, 2003, 42 (01) :37-50
[6]   The effects of Panax ginseng on quality of life [J].
Coleman, CI ;
Hebert, JH ;
Reddy, P .
JOURNAL OF CLINICAL PHARMACY AND THERAPEUTICS, 2003, 28 (01) :5-15
[7]  
EISEL D, 2000, DIG APPL MANUAL, P65
[8]   Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents [J].
Favre, B ;
Ryder, NS .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1996, 40 (02) :443-447
[9]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[10]   JASMONIC ACID IS A SIGNAL TRANSDUCER IN ELICITOR-INDUCED PLANT-CELL CULTURES [J].
GUNDLACH, H ;
MULLER, MJ ;
KUTCHAN, TM ;
ZENK, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (06) :2389-2393