Trace ideals and centers of endomorphism rings of modules over commutative rings

被引:34
作者
Lindo, Haydee [1 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
关键词
Trace ideal; Endomorphism ring; Balanced module; DOUBLE CENTRALIZERS; DOMINANT DIMENSION; GORENSTEIN RINGS;
D O I
10.1016/j.jalgebra.2016.10.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring and M a finitely generated R-module. Under various hypotheses, it is proved that the center of End(R)(M) coincides with the endomorphism ring of the trace ideal of M. These results are exploited to establish results for balanced and rigid modules, and to settle certain cases of a conjecture of Huneke and Wiegand. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 130
页数:29
相关论文
共 50 条
[31]   ENDOMORPHISM RINGS OF MIXED MODULES AND A THEOREM OF W. MAY [J].
Keef, Patrick W. .
HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02) :413-435
[32]   On May Modules of Finite Rank and the Jacobson Radicals of Their Endomorphism Rings [J].
Flagg, Mary ;
Keef, Patrick W. .
NOTE DI MATEMATICA, 2018, 38 (02) :35-54
[33]   Flat modules and coherent endomorphism rings relative to some matrices [J].
Zeng, Yuedi .
AIMS MATHEMATICS, 2023, 8 (06) :14111-14131
[34]   ON COHERENCE OF ENDOMORPHISM RINGS [J].
Zhu, Hai-Yan ;
Ding, Nan-Qing .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (02) :186-194
[35]   REGULARITY IN ENDOMORPHISM RINGS [J].
Mader, Adolf .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) :2823-2844
[36]   Endomorphism rings of supersingular elliptic curves over Fp [J].
Li, Songsong ;
Ouyang, Yi ;
Xu, Zheng .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62
[37]   Properties of endomorphism rings [J].
K. Varadarajan .
Acta Mathematica Hungarica, 1997, 74 :83-92
[38]   Persistence of homology over commutative noetherian rings [J].
Avramov, Luchezar L. ;
Iyengar, Srikanth B. ;
Nasseh, Saeed ;
Sather-Wagstaff, Keri .
JOURNAL OF ALGEBRA, 2022, 610 :463-490
[39]   Isomorphisms of graded endomorphism rings of graded modules close to free ones [J].
Balaba I.N. ;
Mikhalev A.V. .
Journal of Mathematical Sciences, 2009, 156 (2) :209-218
[40]   Endomorphism rings of Abelian groups [J].
Krylov P.A. ;
Mikhalev A.V. ;
Tuganbaev A.A. .
Journal of Mathematical Sciences, 2002, 110 (3) :2683-2745