Trace ideals and centers of endomorphism rings of modules over commutative rings

被引:35
作者
Lindo, Haydee [1 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
关键词
Trace ideal; Endomorphism ring; Balanced module; DOUBLE CENTRALIZERS; DOMINANT DIMENSION; GORENSTEIN RINGS;
D O I
10.1016/j.jalgebra.2016.10.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring and M a finitely generated R-module. Under various hypotheses, it is proved that the center of End(R)(M) coincides with the endomorphism ring of the trace ideal of M. These results are exploited to establish results for balanced and rigid modules, and to settle certain cases of a conjecture of Huneke and Wiegand. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 130
页数:29
相关论文
共 20 条
[1]  
Auslander M., 1960, T AM MATH SOC, V97, P1, DOI 10.2307/1993361
[2]  
Bass Hyman, 1963, Math. Z., V82, P8
[3]  
Bruns Winfried, 1993, Cambridge Studies in Advanced Mathematics, V39
[4]  
Graham Jr Evans E., 1987, MATH SCI RES I PUBL, V15, P213
[5]   Symmetry in the vanishing of Ext over Gorenstein rings [J].
Huneke, C ;
Jorgensen, DA .
MATHEMATICA SCANDINAVICA, 2003, 93 (02) :161-184
[6]   TENSOR-PRODUCTS OF MODULES AND THE RIGIDITY OF TOR [J].
HUNEKE, C ;
WIEGAND, R .
MATHEMATISCHE ANNALEN, 1994, 299 (03) :449-476
[7]  
Huneke Craig, 2016, RIGID IDEALS C UNPUB
[8]  
Kaplansky Irving, 1954, Infinite abelian groups
[9]   Double centralizer properties, dominant dimension, and tilting modules [J].
König, S ;
Slungård, IH ;
Xi, CC .
JOURNAL OF ALGEBRA, 2001, 240 (01) :393-412
[10]  
Lam T.Y., 1999, Lectures on Modules and Rings, V189, DOI DOI 10.1007/978-1-4612-0525-8