A Frictional Contact Problem with Adhesion for Viscoelastic Materials with Long Memory

被引:0
作者
Kasri, Abderrezak [1 ]
机构
[1] Univ 20 Aout 1955 Skikda, Fac Sci, Dept Math, BP 26,Route El Hadaiek, Skikda 21000, Algeria
关键词
viscoelastic material; long memory; adhesion; quasistatic process; Coulomb's law of dry friction; normal compliance; the time-discretization method; variational inequality;
D O I
10.21136/AM.2021.0308-19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.
引用
收藏
页码:479 / 508
页数:30
相关论文
共 24 条
[1]   A QUASI-STATIC FRICTIONAL PROBLEM WITH NORMAL COMPLIANCE [J].
ANDERSSON, LE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (04) :347-369
[2]  
Brezis H, 2011, UNIVERSITEXT, P1
[3]   Dynamic frictionless contact with adhesion [J].
Chau, O ;
Shillor, M ;
Sofonea, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (01) :32-47
[4]  
Chau O., 2016, SOLVABILITY NONCLAMP, P71
[5]  
Drozdov, 1996, FINITE ELASTICITY VI, DOI [10.1142/2905, DOI 10.1142/2905]
[6]  
Duvaut G., 1976, Grundlehren der Mathematicschen Wissenschaften, DOI 10.1007/978-3-642-66165-5
[7]  
Emmrich, 1999, SERIES I MATH
[8]  
FREMOND M, 1987, J MEC THEOR APPL, V6, P383
[9]  
Fremond M., 2002, Non-smooth Thermomechanics, DOI [10.1007/978-3-662-04800-9, DOI 10.1007/978-3-662-04800-9]
[10]  
GASINSKI L., 2006, NONLINEAR ANAL