Synergetic Regulation of Oriented Crystallization and Interfacial Passivation Enables 19.1% Efficient Wide-Bandgap Perovskite Solar Cells

被引:78
作者
Yu, Yue [1 ]
Liu, Rui [1 ]
Liu, Chang [1 ]
Shi, Xiao-Lei [2 ]
Yu, Hua [1 ]
Chen, Zhi-Gang [2 ]
机构
[1] Southwest Petr Univ, Inst Photovolta, Chengdu 610500, Peoples R China
[2] Queensland Univ Technol, Sch Chem & Phys, Brisbane, Qld 4001, Australia
关键词
interfacial passivation; oriented crystallization; stability; wide-bandgap perovskites; PERFORMANCE; STABILITY; GROWTH;
D O I
10.1002/aenm.202201509
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wide-bandgap (WBG) perovskite solar cells (PSCs) suffer from severe voltage loss, which significantly limits the enhancement of photovoltaic performance. Here, 4-fluoro-phenylethylammonium iodide (FPEAI) is used as a dual-functional agent for oriented crystallization and comprehensive passivation of WBG PSCs. The additive of FPEAI promotes crystals to grow along with the (100) orientation with improved crystallinity and to spontaneously form Ruddlesden-Popper 2D perovskite on the grain boundary and surface of 3D crystals, which can passivate defects and protect the perovskite film from moisture erosion as well as suppressed ion migration. In addition, the 2D/3D heterostructure induces a matched energy-level alignment, which mitigates the detrimental interfacial charge recombination at the interface of the 3D perovskite and hole transport layer. Consequently, the modified WBG PSCs exhibit an improved open-circuit voltage to 1.3 V and a fill factor of 77.8%, leading to a remarkable power conversion efficiency of 19.1% with negligible hysteresis. Furthermore, the WBG PSCs maintain 85% of the original efficiency after 1000 h in air, demonstrating outstanding humidity stability. This work indicates that FPEAI can be used as a dual-functional agent to significantly enhance the efficiency of WBG PSCs.
引用
收藏
页数:9
相关论文
共 48 条
[21]   Mixed Cation FAxPEA1-xPbI3 with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells [J].
Li, Nan ;
Zhu, Zonglong ;
Chueh, Chu-Chen ;
Liu, Hongbin ;
Peng, Bo ;
Petrone, Alessio ;
Li, Xiaosong ;
Wang, Liduo ;
Jen, Alex K. -Y. .
ADVANCED ENERGY MATERIALS, 2017, 7 (01)
[22]   A Review on Additives for Halide Perovskite Solar Cells [J].
Liu, Shuang ;
Guan, Yanjun ;
Sheng, Yusong ;
Hu, Yue ;
Rong, Yaoguang ;
Mei, Anyi ;
Han, Hongwei .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)
[23]   Diammonium and Monoammonium Mixed-Organic-Cation Perovskites for High Performance Solar Cells with Improved Stability [J].
Lu, Jianfeng ;
Jiang, Liangcong ;
Li, Wei ;
Li, Feng ;
Pai, Narendra K. ;
Scully, Andrew D. ;
Tsai, Cheng-Min ;
Bach, Udo ;
Simonov, Alexandr N. ;
Cheng, Yi-Bing ;
Spiccia, Leone .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[24]   Spacer Engineering of Diammonium-Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells [J].
Niu, Tianqi ;
Xie, Yue-Min ;
Xue, Qifan ;
Xun, Sangni ;
Yao, Qin ;
Zhen, Fuchao ;
Yan, Wenbo ;
Li, Hong ;
Bredas, Jean-Luc ;
Yip, Hin-Lap ;
Cao, Yong .
ADVANCED ENERGY MATERIALS, 2022, 12 (02)
[25]   Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells [J].
Niu, Tianqi ;
Lu, Jing ;
Jia, Xuguang ;
Xu, Zhuo ;
Tang, Ming-Chun ;
Barrit, Dounya ;
Yuan, Ningyi ;
Ding, Jianning ;
Zhang, Xu ;
Fan, Yuanyuan ;
Luo, Tao ;
Zhang, Yalan ;
Smilgies, Detlef-M. ;
Liu, Zhike ;
Amassian, Aram ;
Jin, Shengye ;
Zhao, Kui ;
Liu, Shengzhong .
NANO LETTERS, 2019, 19 (10) :7181-7190
[26]   Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic Inorganic Lead Halide Perovskites [J].
Noel, Nakita K. ;
Abate, Antonio ;
Stranks, Samuel D. ;
Parrott, Elizabeth S. ;
Burlakov, Victor M. ;
Goriely, Alain ;
Snaith, Henry J. .
ACS NANO, 2014, 8 (10) :9815-9821
[27]   Temperature-dependent hysteresis effects in perovskite-based solar cells [J].
Ono, Luis K. ;
Raga, Sonia R. ;
Wang, Shenghao ;
Kato, Yuichi ;
Qi, Yabing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) :9074-9080
[28]   Semitransparent Perovskite Solar Cells [J].
Rahmany, Stay ;
Etgar, Lioz .
ACS ENERGY LETTERS, 2020, 5 (05) :1519-1531
[29]   Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. [J].
Son, Dae-Yong ;
Kim, Seul-Gi ;
Seo, Ja-Young ;
Lee, Seon-Hee ;
Shin, Hyunjung ;
Lee, Donghwa ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (04) :1358-1364
[30]   Wide-bandgap, low-bandgap, and tandem perovskite solar cells [J].
Song, Zhaoning ;
Chen, Cong ;
Li, Chongwen ;
Awni, Rasha A. ;
Zhao, Dewei ;
Yan, Yanfa .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)