Non-Zero Intercept Frequency: An Accurate Method to Determine the Integral Temperature of Li-Ion Batteries

被引:53
|
作者
Raijmakers, Luc H. J. [1 ,2 ]
Danilov, Dmitri L. [2 ,3 ]
van Lammeren, Joop P. M. [4 ]
Lammers, Thieu J. G. [4 ]
Bergveld, Henk Jan [2 ,4 ]
Notten, Peter H. L. [2 ,3 ]
机构
[1] Delft Univ Technol, NL-2629 JB Delft, Netherlands
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[3] Forschungszentrum Julich IEK 9, D-52425 Julich, Germany
[4] NXP Semicond, NL-5600 KA Eindhoven, Netherlands
关键词
Electrochemical impedance spectroscopy; integral battery temperature; lithium batteries; non-zero intercept frequency (NZIF); sensorless temperature measurement; NETWORK THERMAL-MODEL; INTERNAL TEMPERATURE; IMPEDANCE; DISCHARGE; BEHAVIOR;
D O I
10.1109/TIE.2016.2516961
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new impedance-based approach is introduced in which the integral battery temperature is related to other frequencies than the recently developed zero-intercept frequency (ZIF). The advantage of the proposed non-ZIF (NZIF) method is that measurement interferences, resulting from the current flowing through the battery (pack), can be avoided at these frequencies. This gives higher signal-to-noise ratios (SNRs) and, consequently, more accurate temperature measurements. A theoretical analysis, using an equivalent circuit model of a Li-ion battery, shows that NZIFs are temperature dependent in a way similar to the ZIF and can therefore also be used as a battery temperature indicator. To validate the proposed method, impedance measurements have been performed with individual LiFePO4 batteries and with large LiFePO4 battery packs tested in a full electric vehicle under driving conditions. The measurement results show that the NZIF is clearly dependent on the integral battery temperature and reveals a similar behavior to that of the ZIF method. This makes it possible to optimally adjust the NZIF method to frequencies with the highest SNR.
引用
收藏
页码:3168 / 3178
页数:11
相关论文
共 50 条
  • [21] Dipole-dipole interactions in electrolyte to facilitate Li-ion desolvation for low-temperature Li-ion batteries
    Liu, Changlin
    Li, Zongjun
    Jiang, Lili
    Zhu, Hao
    Wang, Fengchao
    Sheng, Lizhi
    JOURNAL OF ENERGY CHEMISTRY, 2025, 104 : 678 - 686
  • [22] Dipole-dipole interactions in electrolyte to facilitate Li-ion desolvation for low-temperature Li-ion batteries
    Changlin Liu
    Zongjun Li
    Lili Jiang
    Hao Zhu
    Fengchao Wang
    Lizhi Sheng
    Journal of Energy Chemistry, 2025, 104 (05) : 678 - 686
  • [23] Partial cycling aging of Li-ion batteries in frequency regulation applications
    Urquizo, Javier
    Singh, Pritpal
    JOURNAL OF POWER SOURCES, 2024, 592
  • [24] Thermal Optimization Strategies for Li-Ion Batteries: Predictive Temperature Algorithm
    Antonio M.
    Journal of Thermal Science and Engineering Applications, 2024, 16 (08)
  • [25] Effects of electrode loading on low temperature performances of Li-ion batteries
    Yaqub, Adnan
    Lee, You-Jin
    Hwang, Min Ji
    Pervez, Syed Atif
    Farooq, Umer
    Choi, Jeong-Hee
    Kim, Doohun
    Choi, Hae-Young
    Cho, Seong-Back
    Doh, Chil-Hoon
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (11): : 2625 - 2630
  • [26] Thermal conductivity and internal temperature profiles of Li-ion secondary batteries
    Richter, Frank
    Kjelstrup, Signe
    Vie, Preben J. S.
    Burheim, Odne S.
    JOURNAL OF POWER SOURCES, 2017, 359 : 592 - 600
  • [27] A review on various temperature-indication methods for Li-ion batteries
    Raijmakers, L. H. J.
    Danilov, D. L.
    Eichel, R. -A.
    Notten, P. H. L.
    APPLIED ENERGY, 2019, 240 : 918 - 945
  • [28] Thermal Conductivity, Heat Sources and Temperature Profiles of Li-ion Batteries
    Burheim, Odne S.
    Onsrud, M. A.
    Pharoah, J. G.
    Vullum-Bruer, F.
    Vie, P. J. S.
    LITHIUM-ION BATTERIES, 2014, 58 (48): : 145 - +
  • [29] Li-ion batteries for hybrid propulsion Testing, modelling, temperature performance
    Fischnaller, Manuel
    Melbert, Joachim
    Scharner, Sebastian
    ENERGIEEINSPARUNG DURCH ELEKTRONIK IM FAHRZEUG, 2008, 2033 : 131 - 142
  • [30] Thermal Conductivity, Heat Sources and Temperature Profiles of Li-ion Batteries
    Burheim, Odne S.
    Onsrud, M. A.
    Pharoah, J. G.
    Vullum-Bruer, F.
    Vie, P. J. S.
    NANOPHOTONICS V, 2014, 9126 : 145 - 171