Shifted Bernstein-Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler-Bernoulli beam with variable order fractional model

被引:7
作者
Cui, Yuhuan [1 ]
Qu, Jingguo [1 ]
Han, Cundi [2 ]
Cheng, Gang [3 ]
Zhang, Wei [1 ]
Chen, Yiming [2 ,3 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063210, Hebei, Peoples R China
[2] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Hebei, Peoples R China
[3] Univ Tours, Univ Orleans, INSA Ctr Val Loire, LaMe, 3 rue chocolaterie, CS 23410, F-41034 Blois, France
关键词
Euler-Bernoulli beam; Variable order fractional model; Collocation method; Shifted Bernstein function; Shifted Legendre polynomial; Dynamic behavior; OPERATIONAL MATRICES; VIBRATION ANALYSIS; NANOBEAMS;
D O I
10.1016/j.matcom.2022.04.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a kinetic equation of Euler-Bernoulli beam is established with variable order fractional viscoelastic model. An effective numerical algorithm is proposed. This method uses a combination of shifted Bernstein polynomial and Legendre polynomial to approximate the numerical solution. The effectiveness of the algorithm is tested and verified by mathematical examples. The dynamic behavior of viscoelastic beams made of two materials under various loading conditions is studied. (c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 43 条
[21]  
Nutting P.G., 1921, P AM SOC TEST MATER, V21, P1162
[22]   Nonlinear bending and postbuckling analysis of FG nanoscale beams using the two-phase fractional nonlocal continuum mechanics [J].
Oskouie, M. Faraji ;
Ansari, R. ;
Rouhi, H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10)
[23]   Vibration analysis of FG nanobeams on the basis of fractional nonlocal model: a variational approach [J].
Oskouie, M. Faraji ;
Ansari, R. ;
Rouhi, H. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (06) :2775-2782
[24]   Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method [J].
Oskouie, M. Faraji ;
Ansari, R. ;
Rouhi, H. .
MECCANICA, 2018, 53 (4-5) :1115-1130
[25]   Nonlinear vibration analysis of fractional viscoelastic Euler-Bernoulli nanobeams based on the surface stress theory [J].
Oskouie, M. Faraji ;
Ansari, R. ;
Sadeghi, F. .
ACTA MECHANICA SOLIDA SINICA, 2017, 30 (04) :416-424
[26]   Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects [J].
Oskouie, M. Faraji ;
Ansari, R. .
APPLIED MATHEMATICAL MODELLING, 2017, 43 :337-350
[27]  
Pipkin A.C., 1972, Lectures in Viscoelasticity Theory, Applied Mathematical Sciences, V7
[28]  
[浦鸿汀 PU Hongting], 2008, [高分子材料科学与工程, Polymer Materials Science & Engineering], V24, P1
[29]   A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams [J].
Rahimi, Zaher ;
Sumelka, Wojciech ;
Yang, Xiao-Jun .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (11)
[30]   On the variable order dynamics of the nonlinear wake caused by a sedimenting particle [J].
Ramirez, Lynnette E. S. ;
Coimbra, Carlos F. M. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (13) :1111-1118