Shifted Bernstein-Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler-Bernoulli beam with variable order fractional model

被引:7
作者
Cui, Yuhuan [1 ]
Qu, Jingguo [1 ]
Han, Cundi [2 ]
Cheng, Gang [3 ]
Zhang, Wei [1 ]
Chen, Yiming [2 ,3 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063210, Hebei, Peoples R China
[2] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Hebei, Peoples R China
[3] Univ Tours, Univ Orleans, INSA Ctr Val Loire, LaMe, 3 rue chocolaterie, CS 23410, F-41034 Blois, France
关键词
Euler-Bernoulli beam; Variable order fractional model; Collocation method; Shifted Bernstein function; Shifted Legendre polynomial; Dynamic behavior; OPERATIONAL MATRICES; VIBRATION ANALYSIS; NANOBEAMS;
D O I
10.1016/j.matcom.2022.04.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a kinetic equation of Euler-Bernoulli beam is established with variable order fractional viscoelastic model. An effective numerical algorithm is proposed. This method uses a combination of shifted Bernstein polynomial and Legendre polynomial to approximate the numerical solution. The effectiveness of the algorithm is tested and verified by mathematical examples. The dynamic behavior of viscoelastic beams made of two materials under various loading conditions is studied. (c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 43 条
  • [1] Ali M., 2020, SN APPL SCI, V2, P1
  • [2] Efficient CUF-based method for the vibrations of thin-walled open cross-section beams under compression
    Augello, Riccardo
    Daneshkhah, Ehsan
    Xu, Xiangyang
    Carrera, Erasmo
    [J]. JOURNAL OF SOUND AND VIBRATION, 2021, 510
  • [3] An original perspective on variable-order fractional operators for viscoelastic materials
    Burlon, Andrea
    Alotta, Gioacchino
    Di Paola, Mario
    Failla, Giuseppe
    [J]. MECCANICA, 2021, 56 (04) : 769 - 784
  • [4] Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets
    Chen, Yi-Ming
    Wei, Yan-Qiao
    Liu, Da-Yan
    Yu, Hao
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 46 : 83 - 88
  • [5] Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions
    Chen, Yiming
    Sun, Yannan
    Liu, Liqing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 847 - 858
  • [6] Christensen R.M., 1982, THEORY VISCOELASTICI, V2nd ed.
  • [7] Mechanics with variable-order differential operators
    Coimbra, CFM
    [J]. ANNALEN DER PHYSIK, 2003, 12 (11-12) : 692 - 703
  • [8] Flugge W., 1975, VISCOELASTICITY
  • [10] An efficient numerical technique for variable order time fractional nonlinear Klein-Gordon equation
    Hassani, H.
    Machado, J. A. Tenreiro
    Naraghirad, E.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 154 : 260 - 272