Gradient estimates for doubly nonlinear diffusion equations

被引:11
作者
Chen, Daguang [1 ]
Xiong, Changwei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Doubly nonlinear diffusion equation; Gradient estimate; Harnack inequalities; HARNACK INEQUALITY;
D O I
10.1016/j.na.2014.08.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note we obtain some gradient estimates for the positive solution to the doubly nonlinear diffusion equation on closed Riemannian manifold with Ricci curvature bounded below by a non-positive constant. As applications, we also derive corresponding Harnack inequalities. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 164
页数:9
相关论文
共 22 条
[11]  
Kotschwar B, 2009, ANN SCI ECOLE NORM S, V42, P1
[12]   Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation [J].
Li, Junfang ;
Xu, Xiangjin .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4456-4491
[13]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[14]   Local Aronson-Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds [J].
Lu, Pency ;
Ni, Lei ;
Vazquez, Juan-Luis ;
Villani, Cedric .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (01) :1-19
[15]   HOLDER ESTIMATES FOR LOCAL SOLUTIONS OF SOME DOUBLY NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
PORZIO, MM ;
VESPRI, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (01) :146-178
[16]  
VAZQUEZ J. L, 2006, POROUS MEDIUM EQUATI
[17]   HARNACK TYPE INEQUALITIES FOR SOLUTIONS OF CERTAIN DOUBLY NONLINEAR PARABOLIC EQUATIONS [J].
VESPRI, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (01) :104-131
[18]  
Wang Y., 2013, MATH METHODS APPL SC
[19]   Gradient estimates for ut = ΔF(u) on manifolds and some Liouville-type theorems [J].
Xu, Xiangjin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1403-1420
[20]  
Yau ST, 1995, MATH RES LETT, V2, P387