K-theoretic torsion and the zeta function

被引:0
|
作者
Klein, John R. [1 ]
Malkiewich, Cary [2 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Binghamton Univ, Dept Math Sci, Binghamton, NY USA
关键词
zeta function; Reidemeister torsion; K-theory of endomorphisms; CURVES; TRACE;
D O I
10.2140/akt.2022.7.77
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize to higher algebraic K-theory an identity (originally due to Milnor) that relates the Reidemeister torsion of an infinite cyclic cover to its Lefschetz zeta function. Our identity involves a higher torsion invariant, the endomorphism torsion, of a parametrized family of endomorphisms as well as a higher zeta function of such a family. We also exhibit several examples of families of endomorphisms having nontrivial endomorphism torsion.
引用
收藏
页码:77 / 118
页数:44
相关论文
共 50 条
  • [1] Inductive Limits of K-theoretic Complexes with Torsion Coefficients
    Eilers, Soren
    Toms, Andrew S.
    JOURNAL OF K-THEORY, 2008, 1 (01) : 145 - 168
  • [2] K-theoretic torsion invariants for finite von Neumann algebras
    Gong, DG
    HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (01): : 141 - 159
  • [3] K-theoretic Background
    Sujatha, R.
    Bloch-Kato Conjecture for the Riemann Zeta Function, 2015, 418 : 22 - 44
  • [4] DEFORMATION OF K-THEORETIC CYCLES
    Yang, Sen
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (02) : 303 - 330
  • [5] K-theoretic Catalan functions
    Blasiak, Jonah
    Morse, Jennifer
    Seelinger, George H.
    ADVANCES IN MATHEMATICS, 2022, 404
  • [6] K-theoretic Catalan functions
    Blasiak, Jonah
    Morse, Jennifer
    Seelinger, George H.
    ADVANCES IN MATHEMATICS, 2022, 404
  • [7] A K-THEORETIC APPROACH TO MULTIPLICITIES
    LEVINE, M
    MATHEMATISCHE ANNALEN, 1985, 271 (03) : 451 - 458
  • [8] Neutral-fermionic presentation of the K-theoretic Q-function
    Iwao, Shinsuke
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (02) : 629 - 662
  • [9] A K-theoretic note on geometric quantization
    Metzler, DS
    MANUSCRIPTA MATHEMATICA, 1999, 100 (03) : 277 - 289
  • [10] Combinatorial expansions in K-theoretic bases
    Bandlow, Jason
    Morse, Jennifer
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):