On the range of universal functions

被引:14
作者
Costakis, G [1 ]
Melas, A [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
D O I
10.1112/S0024609300007268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the range of universal Taylor series. We prove that every universal Taylor series on the unit disc assumes every complex number, with one possible exception, infinitely often. On the other hand, we prove that on any simply connected domain there exist universal functions that omit one value.
引用
收藏
页码:458 / 464
页数:7
相关论文
共 15 条
[1]  
Ahlfors L. V., 1979, COMPLEX ANAL
[2]  
[Anonymous], 1935, B SOC MATH FRANCE
[3]   APPROXIMATION BY OVERCONVERGENCE OF A POWER SERIES [J].
CHUI, CK ;
PARNES, MN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 36 (03) :693-&
[4]  
COSTAKIS G, IN PRESS P CAMBR PHI
[5]  
GROSSEENDMANN KG, 1987, MITT MATH SEM GEISSE, V176
[6]   ON ZERO-FREE UNIVERSAL ENTIRE-FUNCTIONS [J].
HERZOG, G .
ARCHIV DER MATHEMATIK, 1994, 63 (04) :329-332
[7]  
KAHANE JP, TROIS PAPIERS METHOD
[8]  
Luh W., 1986, Analysis, V6, P191, DOI [10.1524/anly.1986.6.23.191, DOI 10.1524/ANLY.1986.6.23.191]
[9]  
LUH W, 1970, MITT MATH SEM GIESSE, V88
[10]   Growth of coefficients of universal Taylor series and comparison of two classes of functions [J].
Melas, A ;
Nestoridis, V ;
Papadoperakis, I .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 (1) :187-202