RFN-Nest: An end-to-end residual fusion network for infrared and visible images

被引:669
作者
Li, Hui [1 ]
Wu, Xiao-Jun [1 ]
Kittler, Josef [2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, Surrey, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Image fusion; End-to-end network; Nest connection; Residual network; Infrared image; Visible image; QUALITY ASSESSMENT; FRAMEWORK; GRADIENT;
D O I
10.1016/j.inffus.2021.02.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to choose an appropriate strategy to generate the fused image for a specific task in hand. Thus, devising learnable fusion strategy is a very challenging problem in the community of image fusion. To address this problem, a novel end-to-end fusion network architecture (RFN-Nest) is developed for infrared and visible image fusion. We propose a residual fusion network (RFN) which is based on a residual architecture to replace the traditional fusion approach. A novel detail-preserving loss function, and a feature enhancing loss function are proposed to train RFN. The fusion model learning is accomplished by a novel two-stage training strategy. In the first stage, we train an auto-encoder based on an innovative nest connection (Nest) concept. Next, the RFN is trained using the proposed loss functions. The experimental results on public domain data sets show that, compared with the existing methods, our end-to-end fusion network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation. The code of our fusion method is available at https://github.com/hli1221/imagefusion-rfn-nest.
引用
收藏
页码:72 / 86
页数:15
相关论文
共 55 条
[1]   A new image quality metric for image fusion: The sum of the correlations of differences [J].
Aslantas, V. ;
Bendes, E. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2015, 69 (12) :160-166
[2]  
Ben Hamza A, 2005, INTEGR COMPUT-AID E, V12, P135
[3]   Image Fusion With Cosparse Analysis Operator [J].
Gao, Rui ;
Vorobyov, Sergiy A. ;
Zhao, Hong .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) :943-947
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[6]  
Hwang S, 2015, PROC CVPR IEEE, P1037, DOI 10.1109/CVPR.2015.7298706
[7]  
Kittler J., 2020, ARXIV PREPRINT ARXIV
[8]  
Kristan M, 2020, COMPUTER VISION ECCV, P547, DOI 10.1007/978-3-030-68238-5_39
[9]   The Seventh Visual Object Tracking VOT2019 Challenge Results [J].
Kristanl, Matej ;
Matas, Jiri ;
Leonardis, Ales ;
Felsberg, Michael ;
Pflugfelder, Roman ;
Kamarainen, Joni-Kristian ;
Zajc, Luka Cehovin ;
Drbohlav, Ondrej ;
Lukezic, Alan ;
Berg, Amanda ;
Eldesokey, Abdelrahman ;
Kapyla, Jani ;
Fernandez, Gustavo ;
Gonzalez-Garcia, Abel ;
Memarrnoghadam, Alireza ;
Lu, Andong ;
He, Anfeng ;
Varfolomieiev, Anton ;
Chan, Antoni ;
Tripathi, Ardhendu Shekhar ;
Smeulders, Arnold ;
Pedasingu, Bala Suraj ;
Chen, Bao Xin ;
Zhang, Baopeng ;
Wu, Baoyuan ;
Li, Bi ;
He, Bin ;
Yan, Bin ;
Bai, Bing ;
Li, Bing ;
Li, Bo ;
Kim, Bycong Hak ;
Ma, Chao ;
Fang, Chen ;
Qian, Chen ;
Chen, Cheng ;
Li, Chenglong ;
Zhang, Chengquan ;
Tsai, Chi-Yi ;
Luo, Chong ;
Micheloni, Christian ;
Zhang, Chunhui ;
Tao, Dacheng ;
Gupta, Deepak ;
Song, Dejia ;
Wang, Dong ;
Gavves, Efstratios ;
Yi, Eunu ;
Khan, Fahad Shahbaz ;
Zhang, Fangyi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :2206-2241
[10]   RGB-T object tracking: Benchmark and baseline [J].
Li, Chenglong ;
Liang, Xinyan ;
Lu, Yijuan ;
Zhao, Nan ;
Tang, Jin .
PATTERN RECOGNITION, 2019, 96