Construction of highly dispersed and electroconductive silver nanoparticles modified mesoporous Co3O4 hollow nanoboxes from Prussian blue analogues for boosting lithium storage performances

被引:21
作者
Guo, S. Z. [1 ]
Liu, J. Z. [1 ]
Zhou, C. C. [1 ]
Zhang, P. L. [1 ]
Li, S. [1 ]
Yang, Y. [1 ]
Chen, L. Y. [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Ag-decorated Co3O4; Hollow nanoboxes; In-situ chemical reduction; Lithium-ion batteries; METAL-ORGANIC FRAMEWORK; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; ION; GRAPHENE; NITROGEN; BATTERY; ARRAYS; OXIDE;
D O I
10.1016/j.jallcom.2019.152305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile strategy for the synthesis of well-conductive Ag nanoparticles decorated mesoporous Co3O4 nanoboxes is reported. The fabrication processes involve a thermal annealing of Co-3[Co(CN)(6)](2) Prussian blue analogue (PBA) template and subsequent in-situ chemical reductive deposition of Ag coating. The obtained electrically conductive Ag-coated Co3O4 hollow nanoboxes (Ag@Co3O4 HNBs) electrodes possess remarkable lithium storage performances as anodes including high reversible capacity, improved rate capability and long-life cyclability than bare Co3O4 HNBs. The optimized Ag@Co3O4 HNB anodes demonstrate high lithium storage capacity of 1015 mA h g(-1) at 200 mA g(-1), distinguished reactivated capacity (1115 mA h g(-1) at 1 A g(-1)) and decent rate capability (339 mA h g(-1) at 5A g(-1)). The key points of improved electrochemical behaviors for Ag@Co3O4 composites are due to the formation of Co3O4 hierarchical nanostructure with high porosity as well as the enhancement of electrical conductivity introduced by Ag nanoparticles films. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 52 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Barreca D, 2001, CHEM MATER, V13, P588, DOI [10.1021/cm001041x, 10.1021/cm00104lx]
  • [3] Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications
    Catala, Laure
    Mallah, Talal
    [J]. COORDINATION CHEMISTRY REVIEWS, 2017, 346 : 32 - 61
  • [4] Atomic Layer-by-Layer Co3O4/Graphene Composite for High Performance Lithium-Ion Batteries
    Dou, Yuhai
    Xu, Jiantie
    Ruan, Boyang
    Liu, Qiannan
    Pan, Yuede
    Sun, Ziqi
    Dou, Shi Xue
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (08)
  • [5] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [6] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262
  • [7] Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation
    Feng, Yi
    Yu, Xin-Yao
    Paik, Ungyu
    [J]. CHEMICAL COMMUNICATIONS, 2016, 52 (37) : 6269 - 6272
  • [8] The Li-Ion Rechargeable Battery: A Perspective
    Goodenough, John B.
    Park, Kyu-Sung
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) : 1167 - 1176
  • [9] Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries
    Gu, Dong
    Li, Wei
    Wang, Fei
    Bongard, Hans
    Spliethoff, Bernd
    Schmidt, Wolfgang
    Weidenthaler, Claudia
    Xia, Yongyao
    Zhao, Dongyuan
    Schueth, Ferdi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (24) : 7060 - 7064
  • [10] Nanostructured materials for electrochemical energy conversion and storage devices
    Guo, Yu-Guo
    Hu, Jin-Song
    Wan, Li-Jun
    [J]. ADVANCED MATERIALS, 2008, 20 (15) : 2878 - 2887