Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein

被引:237
作者
Sha, BD
Phillips, SE
Bankaitis, VA [1 ]
Luo, M
机构
[1] Univ Alabama Birmingham, Dept Cell Biol, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Ctr Macromol Crystallog, Birmingham, AL 35294 USA
关键词
D O I
10.1038/35179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The yeast phosphatidylinositol-transfer protein (Sec14) catalyses exchange of phosphatidylinositol and phosphatidylcholine between membrane bilayers in vitro(1,2). In vivo, Sec14 activity is essential for vesicle budding from the Golgi complex(3). Hero we report a three-dimensional structure for Sec14 at 2.5 A resolution. Sec14 consists of twelve alpha-helices, six beta-strands, eight 3(10)-helices and has two distinct domains. The carboxy-terminal domain forms a hydrophobic pocket which, in the crystal structure, is occupied by two molecules of N-octyl-beta-D-glucopyranoside and represents the phospholipid-binding domain. This pocket is reinforced by a string motif whose disruption in a sec14 temperature-sensitive mutant results in destabilization of the phospholipid-binding domain. Finally, we have identified an unusual surface helix that may play a critical role in driving Sec14-mediated phospholipid exchange. From this structure, we derive the first molecular clues into how a phosphatidylinositol-transfer protein functions.
引用
收藏
页码:506 / 510
页数:5
相关论文
共 29 条
[1]   Phospholipid metabolism and membrane dynamics [J].
Alb, JG ;
Kearns, MA ;
Bankaitis, VA .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (04) :534-541
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   THE SACCHAROMYCES-CEREVISIAE SEC14 GENE ENCODES A CYTOSOLIC FACTOR THAT IS REQUIRED FOR TRANSPORT OF SECRETORY PROTEINS FROM THE YEAST GOLGI-COMPLEX [J].
BANKAITIS, VA ;
MALEHORN, DE ;
EMR, SD ;
GREENE, R .
JOURNAL OF CELL BIOLOGY, 1989, 108 (04) :1271-1281
[4]   AN ESSENTIAL ROLE FOR A PHOSPHOLIPID TRANSFER PROTEIN IN YEAST GOLGI FUNCTION [J].
BANKAITIS, VA ;
AITKEN, JR ;
CLEVES, AE ;
DOWHAN, W .
NATURE, 1990, 347 (6293) :561-562
[5]  
BANKAITIS VA, 1996, PHOSPHOLIPID TRANSFE
[6]   RIBBONS 2 0 [J].
CARSON, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :958-&
[7]   Isolation and mapping of a human gene (SEC14L), partially homologous to yeast SEC14, that contains a variable number of tandem repeats (VNTR) site in its 3' untranslated region [J].
Chinen, K ;
Takahashi, E ;
Nakamura, Y .
CYTOGENETICS AND CELL GENETICS, 1996, 73 (03) :218-223
[8]  
Cleves A, 1991, Trends Cell Biol, V1, P30, DOI 10.1016/0962-8924(91)90067-J
[9]   MUTATIONS IN THE SAC1 GENE SUPPRESS DEFECTS IN YEAST GOLGI AND YEAST ACTIN FUNCTION [J].
CLEVES, AE ;
NOVICK, PJ ;
BANKAITIS, VA .
JOURNAL OF CELL BIOLOGY, 1989, 109 (06) :2939-2950
[10]   MUTATIONS IN THE CDP CHOLINE PATHWAY FOR PHOSPHOLIPID BIOSYNTHESIS BYPASS THE REQUIREMENT FOR AN ESSENTIAL PHOSPHOLIPID TRANSFER PROTEIN [J].
CLEVES, AE ;
MCGEE, TP ;
WHITTERS, EA ;
CHAMPION, KM ;
AITKEN, JR ;
DOWHAN, W ;
GOEBL, M ;
BANKAITIS, VA .
CELL, 1991, 64 (04) :789-800