High Accuracy Hyperspectral Image Classification Based on Empirical Mode Decomposition and Composite Kernel

被引:0
作者
Demir, Begum [1 ]
Erturk, Sarp [1 ]
机构
[1] Kocaeli Univ, Elekt & Haberlesme Muhendisligi Bolumu, TR-41040 Izmit, Turkey
来源
2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2 | 2009年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes to use Empirical Mode Decomposition EMD to increase the classification accuracy, of hyperspectral images, EMD is a non linear and adaptive signal decomposition approach and decomposes signals into Intrinsic Mode Functions. MFsg and a final residue. In this paper initially EMD is appllied to each hyperspectral image band and the IMFs corresponding to each hyperspectral image band are obtained. Then the information contained in the first IMFs and secondary IMFs of each band are combined using composite kernels Support vector machine SVMg based classification is used to show, the classification performance of the proposed approach Experimental results show that the SVM classification accuracy can significantly, be improved using the proposed EMD and composite kernel based classification approach
引用
收藏
页码:890 / 893
页数:4
相关论文
共 10 条
[1]  
[Anonymous], AVIRIS NW INDIANAS I
[2]  
[Anonymous], 2003, WILEY HOBOKEN
[3]   Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation [J].
Bhuiyan, Sharif M. A. ;
Adhami, Reza R. ;
Khan, Jesmin F. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
[4]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[5]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[6]  
Chaudhry F., 2006, Recent Advances in Hyperspectral Signal and Image Processing
[7]   Hyperspectral image classification using relevance vector machines [J].
Demir, Beguem ;
Erturk, Sarp .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :586-590
[8]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[9]  
LINDERHED A, 2004, LINKOPING STUDIES SC
[10]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790