On regularity for Beurling-Deny type Dirichlet forms

被引:6
作者
Kassmann, M [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词
Dirichlet forms; Harnack inequality; Beurling-Deny formula; Holder regularity; integrodifferential operators;
D O I
10.1023/A:1022486631020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Characteristic examples of Beurling-Deny type Dirichlet forms are considered. The forms are identified with bilinear forms of integro-differential operators that arise as generators of jump-diffusion processes. The aim of this article is to prove Harnack inequalities for these operators and consequently Holder regularity of weak H-1-solutions. Moser's iteration technique is used.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 35 条
[1]   Invariant measures and symmetry property of Levy type operators [J].
Albeverio, S ;
Rüdiger, B ;
Wu, JL .
POTENTIAL ANALYSIS, 2000, 13 (02) :147-168
[2]  
[Anonymous], 1977, PUBL RES I MATH SCI
[3]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ARONSON, DG ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) :81-&
[4]  
BASS RF, IN PRESS POTENTIAL A
[5]  
Bensoussan A., 1984, IMPULSE CONTROL QUAS
[6]   A Saint-Venant type principle for dirichlet forms on discontinuous media. [J].
Biroli, M ;
Mosco, U .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :125-181
[7]   DIRICHLET SPACES ASSOCIATED WITH INTEGRO-DIFFERENTIAL OPERATORS .1. [J].
ELLIOTT, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) :87-&
[8]  
ELLIOTT J, 1965, ILLINOIS J MATH, V10, P66
[9]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[10]  
FABES EB, 1986, ARCH RATION MECH AN, V96, P327