Truncation and reset process on the dynamics of Parrondo's games

被引:9
作者
Chang, CH
Tsong, TY
机构
[1] Natl Ctr Theoret Sci, Div Phys, Sect 2, Hsinchu 300, Taiwan
[2] Univ Minnesota, Coll Biol Sci, St Paul, MN 55108 USA
[3] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.025101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The counter-intuitive feature of Parrondo's games is illustrated on various dynamical systems combined from different deterministic and stochastic subsystems. The concept of truncation and reset process is introduced, which provides a transparent perspective to understand the underlying mechanism of this class of dynamics, including the transport of flashing ratchets, and clarifies the puzzlement why random switching between two games can generate reversal dynamics as periodical switching does.
引用
收藏
页数:4
相关论文
共 16 条
[1]   Making molecules into motors [J].
Astumian, RD .
SCIENTIFIC AMERICAN, 2001, 285 (01) :56-64
[2]   Stationary and oscillatory spatial patterns induced by global periodic switching [J].
Buceta, J ;
Lindenberg, K ;
Parrondo, JMR .
PHYSICAL REVIEW LETTERS, 2002, 88 (02) :4
[3]   Ratchet models using driving forces generated by deterministic chaotic maps [J].
Chang, CH .
PHYSICAL REVIEW E, 2002, 66 (01)
[4]  
FLITNEY AP, QUANTPH0201037
[5]  
Harmer GP, 1999, STAT SCI, V14, P206
[6]   Brownian ratchets and Parrondo's games [J].
Harmer, GP ;
Abbott, D ;
Taylor, PG ;
Parrondo, JMR .
CHAOS, 2001, 11 (03) :705-714
[7]  
Harmer GP, 2000, AIP CONF PROC, V511, P189, DOI 10.1063/1.59974
[8]   Game theory - Losing strategies can win by Parrondo's paradox [J].
Harmer, GP ;
Abbott, D .
NATURE, 1999, 402 (6764) :864-864
[9]   A review of Parrondo's paradox [J].
Harmer, Gregory P. ;
Abbott, Derek .
FLUCTUATION AND NOISE LETTERS, 2002, 2 (02) :R71-R107
[10]   Feynman's ratchet and pawl: An exactly solvable model [J].
Jarzynski, C ;
Mazonka, O .
PHYSICAL REVIEW E, 1999, 59 (06) :6448-6459