Chattering bifurcations in a Duffing unilateral vibro-impact system

被引:21
作者
Feng Jin-Qian [1 ,2 ]
Xu Wei [1 ]
Niu Yu-Jun [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
[2] Xian Polytech Univ, Coll Sci, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Duffing vibro-impact system; tail mapping; chattering bifurcation; CHAOS;
D O I
10.7498/aps.59.157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A tail-mapping is introduced to deal with the tail impacts caused by the Chattering, and based on which, an effective numerical method is suggested to simulate the chattering in the vibro-impact system. As an illustrative example, a Duffing unilateral vibro-impact system is investigated. The results show the evidence of complete and incomplete chattering. We also investigate two novel chattering bifurcations, including transitions from complete to incomplete chattering and incomplete chattering period to aperiodic motion.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 13 条
  • [1] ALZATE R, 2008, THESIS U NAPLES FEDE
  • [2] Brogliato B, 1999, Nonsmooth Mechanics: Models, Dynamics and Control, V2nd
  • [3] BUDD C, 1992, DYNAMICS IMPACT OSCI
  • [4] Bifurcations in Nonsmooth Dynamical Systems
    di Bernardo, Mario
    Budd, Chris J.
    Champneys, Alan R.
    Kowalczyk, Piotr
    Nordmark, Arne B.
    Tost, Gerard Olivar
    Piiroinen, Petri T.
    [J]. SIAM REVIEW, 2008, 50 (04) : 629 - 701
  • [5] DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
  • [6] Period-doubling bifurcation of stochastic Duffing one-sided constraint system
    Feng Jin-Qian
    Xu Wei
    Wang Rui
    [J]. ACTA PHYSICA SINICA, 2006, 55 (11) : 5733 - 5739
  • [7] Jin D., 2005, Vibration and control of collision
  • [8] Kunze M., 2000, Non-smooth Dynamical Systems
  • [9] Leine R. 1., 2004, Dynamics and Bifurcations of Non- Smooth Mechanical Systems
  • [10] Investigation of the bifurcation of stochastic van der Pol system
    Li Gao-Jie
    Wei, Xu
    Wang Liang
    Feng Jin-Qian
    [J]. ACTA PHYSICA SINICA, 2008, 57 (04) : 2107 - 2114