Superassembled Red Phosphorus Nanorod-Reduced Graphene Oxide Microflowers as High-Performance Lithium-Ion Battery Anodes

被引:27
作者
Wang, Tao [1 ]
Cheng, Fengli [1 ]
Zhang, Na [1 ]
Tian, Wei [1 ]
Zhou, Junjie [1 ]
Zhang, Runhao [1 ]
Cao, Jinchao [1 ]
Luo, Mingfu [1 ]
Li, Ning [1 ]
Jiang, Likun [1 ]
Li, Dongwei [1 ]
Li, Yong [1 ]
Liang, Kang [2 ]
Liu, Hong [3 ]
Chen, Pu [4 ]
Kong, Biao [5 ]
机构
[1] Qilu Univ Technol, Natl Supercomp Res Ctr Adv Mat, Adv Mat Inst, Shandong Acad Sci, Jinan 250014, Peoples R China
[2] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[3] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[4] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[5] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat iChE, Shanghai 200433, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
anodes; lithium-ion batteries; red phosphorus nanorods; reduced graphene microflower; ELECTROCHEMICAL PERFORMANCE; HYBRID ANODE; NANOPARTICLES; DEPOSITION; FRAMEWORKS; NANOHYBRID; COMPOSITE; SILICON; DESIGN;
D O I
10.1002/adem.202001507
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion battery (LIB) anodes using red phosphorus materials are promising with the advantages of high capacity, low price, and abundant reserves. However, the huge volume expansion (approximate to 300%) of red phosphorus during the charge and discharge process significantly limits their application. Herein, superassembled red phosphorus nanorod/reduced graphene oxide microflower (RPN/rGF) composites are reported. The RPNs can accommodate huge volume expansion, shorten lithium-ion transmission distances, and provide more conductive contacts, and the rGF serves as an electron pathway and buffers the RPN volume expansion. Experimental and finite element simulations prove the fixation of P-C bonds in the RPN/rGF composite, thereby demonstrating a high capacity (1760 mA h g(-1) at 0.3 C), remarkable rate capability (1073 mA h g(-1) at 3 C), and great cyclability (1380 mA h g(-1) at 0.3 C over 300 cycle). This work could shed light on the future development of red phosphorus composite materials for commercially viable lithium-ion batteries.
引用
收藏
页数:8
相关论文
共 55 条
[1]   High-performance red phosphorus-sulfurized polyacrylonitrile composite by electrostatic spray deposition for lithium-ion batteries [J].
Baboukani, Amin Rabiei ;
Khakpour, Iman ;
Adelowo, Ebenezer ;
Drozd, Vadym ;
Shang, Wei ;
Wang, Chunlei .
ELECTROCHIMICA ACTA, 2020, 345
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   High-Quality Graphene Microflower Design for High-Performance Li-S and Al-Ion Batteries [J].
Chen, Hao ;
Chen, Chen ;
Liu, Yingjun ;
Zhao, Xiaoli ;
Ananth, Nimrodh ;
Zheng, Bingna ;
Peng, Li ;
Huang, Tieqi ;
Gao, Weiwei ;
Gao, Chao .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[4]   Squid inks-derived nanocarbons with unique "shell@pearls" structure for high performance supercapacitors [J].
Cheng, Fengli ;
Liu, Wei ;
Zhang, Yuan ;
Wang, Huanlei ;
Liu, Shuang ;
Hao, Enchao ;
Zhao, Shuping ;
Yang, Hongzhan .
JOURNAL OF POWER SOURCES, 2017, 354 :116-123
[5]   Digital Printing of Solid-State Lithium-Ion Batteries [J].
Deiner, L. Jay ;
Gomes Bezerra, Carlos Andre ;
Howell, Thomas G. ;
Powell, Amber S. .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (11)
[6]   Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability [J].
Du, Xin ;
Zhao, Caixia ;
Luan, Yi ;
Zhang, Changbin ;
Jaroniec, Mietek ;
Huang, Hongwei ;
Zhang, Xueji ;
Qiao, Shi-Zhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (40) :21560-21569
[7]   Hollow Carbon Cloth Enhances the Performance of Red Phosphorus for Flexible Lithium Ion Battery [J].
Du, Yahui ;
Tang, Yufeng ;
Chang, Chengkang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) :A2938-A2942
[8]   Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor-Redistribution for High-Energy Sodium-Ion Batteries [J].
Gao, Hong ;
Zhou, Tengfei ;
Zheng, Yang ;
Liu, Yuqing ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ADVANCED ENERGY MATERIALS, 2016, 6 (21)
[9]   A full battery system of pre-lithiated phosphorus/sulfurized pyrolyzed poly(acrylonitrile) with an effective electrolyte and improved safety [J].
Han, Xinpeng ;
Wang, Xiaojun ;
Han, Muyao ;
Sun, Jie .
GREEN CHEMISTRY, 2020, 22 (13) :4252-4258
[10]   Superassembly of Porous Fetet(NiFe)octO Frameworks with Stable Octahedron and Multistage Structure for Superior Lithium-Oxygen Batteries [J].
He, Biao ;
Wang, Jun ;
Liu, Jiaqing ;
Li, Yong ;
Huang, Qishun ;
Hou, Yue ;
Li, Gaoyang ;
Li, Jiajia ;
Zhang, Runhao ;
Zhou, Junjie ;
Tian, Wei ;
Du, Yong ;
Dang, Feng ;
Wang, Hongchao ;
Kong, Biao .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)