An Ultra-Wideband IF Millimeter-Wave Receiver With a 20 GHz Channel Bandwidth Using Gain-Equalized Transformers

被引:57
作者
Bhagavatula, Venumadhav [1 ]
Zhang, Tong [2 ]
Suvarna, Apsara Ravish [2 ]
Rudell, Jacques Christophe [2 ]
机构
[1] Samsung Semicond Inc, San Jose, CA 95134 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Millimeter-wave integrated circuits; phased-arrays; receivers; RLC circuits; wideband; PHASED-ARRAY RECEIVER; CMOS; COMPACT;
D O I
10.1109/JSSC.2015.2504411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a CMOS millimeter-wave (mm-wave) receiver designed to meet the challenges in low-power, ultra-broadband, phased-array systems with a large number of array elements. This receiver employs a high intermediate-frequency (IF) heterodyne architecture to reduce the frequency and power consumption associated with distributing a local oscillator (LO). The receiver operates over a bandwidth of 51-71 GHz, while maintaining 20 GHz of bandwidth along the signal chain of the entire mm-wave front end, through a high-IF stage, and to the baseband output. To maintain a high fractional bandwidth (fBW) throughout the signal chain, this receiver employs multiple gain-equalized transformers. Receiver measurements show an overall flat bandwidth response of 20 GHz, with a total gain of 20 dB, a minimum double-sideband noise figure of 7.8 dB, and an input 1 dB compression power of -24 dBm while consuming 115 mW from a 1.1 V supply. The test chip, implemented in a six-metal layer 40 nm CMOS process, occupies an area (including pads) of 1.2 mm(2).
引用
收藏
页码:323 / 331
页数:9
相关论文
共 18 条
[1]  
Afshar B., 2008, Solid-State Circuits Conference, P182
[2]   A Compact 77% Fractional Bandwidth CMOS Band-Pass Distributed Amplifier With Mirror-Symmetric Norton Transforms [J].
Bhagavatula, Venumadhav ;
Taghivand, Mazhareddin ;
Rudell, Jacques Christophe .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (05) :1085-1093
[3]   Millimeter-wave CMOS design [J].
Doan, CH ;
Emami, S ;
Niknejad, AM ;
Brodersen, RW .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (01) :144-155
[4]  
Emami S, 2005, IEEE RAD FREQ INTEGR, P163
[5]  
Friss H. T., 1937, P IRE, V25, P841
[6]   A 24-GHz SiGe phased-array receiver - LO phase-shifting approach [J].
Hashemi, H ;
Guan, X ;
Komijani, A ;
Hajimiri, A .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (02) :614-626
[7]   A Compact, Supply-Voltage Scalable 45-66 GHz Baseband-Combining CMOS Phased-Array Receiver [J].
Kundu, Sandipan ;
Paramesh, Jeyanandh .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (02) :527-542
[8]   Nanoscale CMOS Transceiver Design in the 90170-GHz Range [J].
Laskin, Ekaterina ;
Khanpour, Mehdi ;
Nicolson, Sean T. ;
Tomkins, Alexander ;
Garcia, Patrice ;
Cathelin, Andreia ;
Belot, Didier ;
Voinigescu, Sorin P. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (12) :3477-3490
[9]   A 75-GHz phase-locked loop in 90-nm CMOS technology [J].
Lee, Jri ;
Liu, Mingchung ;
Wang, Huaide .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (06) :1414-1426
[10]   A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching [J].
Li, Guansheng ;
Liu, Li ;
Tang, Yiwu ;
Afshari, Ehsan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (06) :1295-1308