Nitrogen-doped porous carbon for excellent CO2 capture: A novel method for preparation and performance evaluation

被引:42
|
作者
Xiao, Jianfei [1 ]
Yuan, Xiaofang [1 ]
Zhang, Tian C. [2 ]
Ouyang, Like [1 ]
Yuan, Shaojun [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Low Carbon Technol & Chem React Engn Lab, Chengdu 610065, Peoples R China
[2] Univ Nebraska Lincoln, Civil & Environm Engn Dept, Omaha, NE 68182 USA
关键词
Organic potassium salts; Solvent-free melt polycondensation; Porous carbon; Pressure swing CO2 adsorption; Uninterrupted cycle operation; COVALENT ORGANIC FRAMEWORKS; POTASSIUM-CITRATE; ACTIVATED CARBON; DIOXIDE CAPTURE; IONIC LIQUIDS; SURFACE-AREA; ADSORPTION; ADSORBENTS; POLYMERS; SULFUR;
D O I
10.1016/j.seppur.2022.121602
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Heteroatomic doped porous carbon (HPCs) is a promising advanced material, showing great application potential in greenhouse gas capture. Here, in-situ N-doped porous carbon (NPC) was developed via a novel and readily scalable strategy one-step solvent-free melt polycondensation assisted by organic potassium salts, followed by pyrolysis and activation. As both a template and an activator, the added C6H5K3O7 played an important role to create abundant microporous structure. The as-fabricated NPC-650-0.5 showed a rich N content (6.11 at.%), abundant narrow micro-porosity (0.3437 cm(3).g(-1)), and a high surface area (1209.37 m(2).g(-1)) and delivered an excellent CO2 static adsorption capacity (4.16 mmol.g(-1) and 8.40 mmol.g(-1) at 100 and 500 kPa), a fast adsorption kinetics (circa 98% of balance capacity in 12 min), moderate heat of adsorption (25 to 30 kJ/mol), high selectivity of CO2/N-2, and outstanding uninterrupted recyclability. Both the narrow micropore volume and N-doping sites had strong effects on the CO2 adsorption capacity, indicating a physical and chemical adsorption process with the mechanism being multi-layer adsorption by the micropore filling. This work highlights the great potential of the NPC-650-0.5 for capturing CO2 and offers new insights into a green activator and a simple and easy-to-scale method for preparing HPCs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to CO2 capture
    Zhang, Wunengerile
    Bao, Yongsheng
    Bao, Agula
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2020, 8 (03):
  • [2] Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture
    Hao, Guang-Ping
    Li, Wen-Cui
    Qian, Dan
    Lu, An-Hui
    ADVANCED MATERIALS, 2010, 22 (07) : 853 - +
  • [3] Facile Synthesis of Nitrogen-Doped Porous Carbon for Selective CO2 Capture
    He, Jiajun
    To, John
    Mei, Jianguo
    Bao, Zhenan
    Wilcox, Jennifer
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2144 - 2151
  • [4] Nitrogen-doped Porous Carbon for CO2 Adsorption
    Chen Ai-Bing
    Yu Yi-Feng
    Zang Wen-Wei
    Qi Guo-Lu
    Yu Yun-Hong
    Li Yue-Tong
    JOURNAL OF INORGANIC MATERIALS, 2015, 30 (01) : 9 - 16
  • [5] Nitrogen-doped porous carbon for CO2 adsorption
    College of Chemical & Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang
    050018, China
    Wuji Cailiao Xuebao, 1 (9-16):
  • [6] Nitrogen-doped hierarchically porous carbon spheres for low concentration CO2 capture
    Yang Li
    Jing Wang
    Sisi Fan
    Fanan Wang
    Zheng Shen
    Hongmin Duan
    Jinming Xu
    Yanqiang Huang
    Journal of Energy Chemistry , 2021, (02) : 168 - 174
  • [7] Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion
    Li, Yao
    Zou, Bo
    Hu, Changwen
    Cao, Minhua
    CARBON, 2016, 99 : 79 - 89
  • [8] Nitrogen-doped hierarchically porous carbon spheres for low concentration CO2 capture
    Li, Yang
    Wang, Jing
    Fan, Sisi
    Wang, Fanan
    Shen, Zheng
    Duan, Hongmin
    Xu, Jinming
    Huang, Yanqiang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 53 : 168 - 174
  • [9] Hierarchically Structured Porous Nitrogen-Doped Carbon for Highly Selective CO2 Capture
    Li, Di
    Chen, Yanli
    Zheng, Min
    Zhao, Haifeng
    Zhao, Yunfeng
    Sun, Zaicheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (01): : 298 - 304
  • [10] Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture
    Qian, Dan
    Hao, Guang-Ping
    Li, Wen-Cui
    Xinxing Tan Cailiao/New Carbon Materials, 2013, 28 (04): : 267 - 272