Improving the Volumetric Energy Density of Supercapacitors

被引:33
作者
Goubard-Bretesche, Nicolas [1 ,2 ,3 ]
Crosnier, Olivier [1 ,3 ]
Favier, Frederic [2 ,3 ]
Brousse, Thierry [1 ,3 ]
机构
[1] Univ Nantes, CNRS UMR 6502, Inst Mat Jean Rouxel IMN, F-44322 Nantes 3, France
[2] Univ Montpellier, CNRS UMR 5253, Inst Charles Gerhardt Montpellier, Campus Triolet, F-34095 Montpellier 5, France
[3] CNRS FR 3459, Reseau Stockage Electrochim Energie, F-80039 Amiens, France
关键词
supercapacitor; volumetric energy density; EDLC; aqueous eletrolyte; device; ELECTROCHEMICAL CAPACITORS; PERFORMANCE; BEHAVIOR; OXIDES; POWER; MNO2;
D O I
10.1016/j.electacta.2016.01.171
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to the low double-layer capacitance of activated carbons (<20 mu F cm(-2)) and to their low density related to their large micro/meso porosity, the volumetric energy density of commercial supercapacitors remains low. Therefore, the use of pseudocapacitive oxides or nitrides as electrode materials can drastically improve the volumetric performance. However, there is currently a lack of reliable tools to extrapolate the performance of a 1 cm(2) electrode to a real life cell of several thousand farads. In this paper, we provide a calculation tool to extrapolate the cell capacitance and the energy density both from a gravimetric and volumetric point of view in a 399 cm(3) device. The calculation datasheet indicates that in order to improve the volumetric energy density of supercapacitors, it is crucial to lower the electrodes porosity down to 30-40%. Similarly, the use of high-density pseudocapacitive oxides greatly enhances the volumetric energy density of the related devices. Combining both parameters (porosity of 30%, density of 4.5 g cm(-3), active material capacitance of 250 F g(-1)) can lead to a 28000 F device compared to only 3000 F for a commercial cell of the same volume. The design of asymmetric aqueous devices by combining two high-density pseudocapacitive oxides with reasonable specific capacitance (approximate to 100 F g(-1)) is also an interesting way to further improve the cell voltage and subsequently the volumetric energy density. Additionally, the use of aqueous electrolytes enhances the safety of the cells. Finally, the provided spreadsheet will help to envision different associations of pseudocapacitive and/or capacitive materials and to predict their performance when used in real life cells. (c) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:458 / 463
页数:6
相关论文
共 19 条
  • [1] [Anonymous], 1999, ELECTROCHEMICAL SUPE
  • [2] Azais P., 2013, Supercapacitors Materials, Systems and Applications, P307, DOI [DOI 10.1002/9783527646661.CH10, 10.1002/9783527646661.ch10]
  • [3] Bélanger D, 2008, ELECTROCHEM SOC INTE, V17, P49
  • [4] A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte
    Brousse, T
    Toupin, M
    Bélanger, D
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) : A614 - A622
  • [5] Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor
    Brousse, Thierry
    Taberna, Pierre-Louis
    Crosnier, Olivier
    Dugas, Romain
    Guillemet, Philippe
    Scudeller, Yves
    Zhou, Yingke
    Favier, Frederic
    Belanger, Daniel
    Simon, Patrice
    [J]. JOURNAL OF POWER SOURCES, 2007, 173 (01) : 633 - 641
  • [6] Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors
    Brousse, Thierry
    Toupin, Mathieu
    Dugas, Romain
    Athouel, Laurence
    Crosnier, Olivier
    Belanger, Daniel
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) : A2171 - A2180
  • [7] To Be or Not To Be Pseudocapacitive?
    Brousse, Thierry
    Belanger, Daniel
    Long, Jeffrey W.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) : A5185 - A5189
  • [8] Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors
    Cottineau, T
    Toupin, M
    Delahaye, T
    Brousse, T
    Bélanger, D
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04): : 599 - 606
  • [9] Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes
    Fongy, C.
    Gaillot, A. -C.
    Jouanneau, S.
    Guyomard, D.
    Lestriez, B.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : A885 - A891
  • [10] In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors
    Ghodbane, Ouassim
    Ataherian, Fatemeh
    Wu, Nae-Lih
    Favier, Frederic
    [J]. JOURNAL OF POWER SOURCES, 2012, 206 : 454 - 462