Asymptotic behavior of an odd-order delay differential equation

被引:10
作者
Li, Tongxing [1 ]
Rogovchenko, Yuriy V. [2 ]
机构
[1] Qingdao Technol Univ, Feixian 273400, Shandong, Peoples R China
[2] Univ Agder, Dept Math Sci, POB 422, N-4604 Kristiansand, Norway
关键词
asymptotic behavior; odd-order; delay differential equation; oscillation; OSCILLATION CRITERIA;
D O I
10.1186/1687-2770-2014-107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study asymptotic behavior of solutions to a class of odd-order delay differential equations. Our theorems extend and complement a number of related results reported in the literature. An illustrative example is provided.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
[2]  
[Anonymous], 2002, Oscillation Theory for Second Order Linear, Half Linear, Superlinear and Sublinear Dynamic Equations
[3]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[4]   Comparison Theorems for the Third-Order Delay Trinomial Differential Equations [J].
Baculikova, B. ;
Dzurina, J. .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[5]   Oscillation of third order trinomial delay differential equations [J].
Baculikova, Blanka ;
Dzurina, Jozef ;
Rogovchenko, Yuri V. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) :7023-7033
[6]   Asymptotic Properties of Third-Order Delay Trinomial Differential Equations [J].
Dzurina, J. ;
Komarikova, R. .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[7]   Properties of the third order trinomial differential equations with delay argument [J].
Dzurina, Jozef ;
Kotorova, Renata .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1995-2002
[8]   On the oscillation of certain third order nonlinear functional differential equations [J].
Grace, Said R. ;
Agarwal, Ravi P. ;
Pavani, Raffaella ;
Thandapani, E. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :102-112
[9]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[10]  
Kiguradze I.T., 1993, ASYMPTOTIC PROPERTIE