Determination of selenium in biological samples with an energy -dispersive X-ray fluorescence spectrometer

被引:13
作者
Li, Xiaoli [1 ]
Yu, Zhaoshui [2 ]
机构
[1] Tianjin Inst Geol & Mineral Resources China, Tianjin, Peoples R China
[2] Chinese Acad Geol Sci China, Inst Geophys & Geochem Explorat, Beijing, Peoples R China
关键词
Selenium; Biological samples; High-energy polarized X-ray fluorescence spectrometer; Limit of detection; TRACE-ELEMENTS; SE; BLOOD; WATER;
D O I
10.1016/j.apradiso.2016.02.010
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Selenium is both a nutrient and a toxin. Selenium especially organic selenium is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100 kV, 600 W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1 mu g g(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100 kV, 600 W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1 mu g/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 24 条
[1]   The use of total-reflection X-ray fluorescence to track the metabolism and excretion of selenium in humans [J].
Bellisola, G ;
Pasti, F ;
Valdes, M ;
Torboli, A .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1999, 54 (10) :1481-1485
[2]   Monitoring of selenium. in water samples using dispersive liquid-liquid microextraction followed by iridium-modified tube graphite furnace atomic absorption spectrometry [J].
Bidari, Araz ;
Jahromi, Elham Zeini ;
Assadi, Yaghoub ;
Hosseini, Mohammad Reza Milani .
MICROCHEMICAL JOURNAL, 2007, 87 (01) :6-12
[3]   DETERMINATION OF ARSENIC, ANTIMONY AND SELENIUM IN BIOLOGICAL SAMPLES BY HYDRIDE EVOLUTION AND X-RAY-FLUORESCENCE SPECTROMETRY [J].
BOHMER, RG ;
PSOTTA, PK .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1990, 336 (03) :226-231
[4]  
Czauderna Marian, 1988, APPL RADIAT ISOTOPES, V47, P735
[5]   Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation [J].
dos Santos, Eder Jose ;
Herrmann, Amanda Beatriz ;
de Caires, Suzete Kulik ;
Azzolin Frescura, Vera Lucia ;
Curtius, Adilson Jose .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2009, 64 (06) :549-553
[6]   BACKGROUND REDUCTION IN X-RAY-FLUORESCENCE SPECTRA USING POLARIZATION [J].
DZUBAY, TG ;
JARRETT, BV ;
JAKLEVIC, JM .
NUCLEAR INSTRUMENTS & METHODS, 1974, 115 (01) :297-299
[7]  
Fordyce F., 2005, ESSENTIALS MED GEOLO, P373, DOI DOI 10.1007/978-94-007-4375-5_16
[8]   Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis [J].
Griesel, S. ;
Mundry, R. ;
Kakuschke, A. ;
Fonfara, S. ;
Siebert, U. ;
Prange, A. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2006, 61 (10-11) :1158-1165
[9]  
Hiroyuki N., 2005, ADV XRAY, V36, P235
[10]   Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry:: Possibilities and drawbacks [J].
Marguí, E ;
Hidalgo, M ;
Queralt, I .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2005, 60 (9-10) :1363-1372