Zernike-Bessel representation and its application to Hankel transforms

被引:8
作者
Cerjan, Charles [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1364/JOSAA.24.001609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The duality between the well-known Zernike polynomial basis set and the Fourier-Bessel expansion of suitable functions on the radial unit interval is exploited to calculate Hankel transforms. In particular, the Hankel transform of simple truncated radial functions is observed to be exact, whereas more complicated functions may be evaluated with high numerical accuracy. The formulation also provides some general insight into the limitations of the Fourier-Bessel representation, especially for infinite-range Hankel transform pairs. (C) 2007 Optical Society of America
引用
收藏
页码:1609 / 1616
页数:8
相关论文
共 16 条
[1]  
ABRAMOWITZ A, 1972, HDB MATH FUNCTIONS, pCH22
[2]  
ANDREWS GE, 1999, SPECIAL FUNCTIONS, P210
[3]  
[Anonymous], TREATISE THEORY BESS
[4]  
Born M., 1973, Principles of Optics
[5]  
GIBSON SF, 1991, J OPT SOC AM A, V8, P1601, DOI 10.1364/JOSAA.8.001601
[6]  
GRADSHTEYN IS, 1980, TABLE INTEGRALS SERI, P1037
[7]   Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields [J].
Guizar-Sicairos, M ;
Gutiérrez-Vega, JC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (01) :53-58
[8]   AN IMPROVED METHOD FOR COMPUTING A DISCRETE HANKEL TRANSFORM [J].
JOHNSON, HF .
COMPUTER PHYSICS COMMUNICATIONS, 1987, 43 (02) :181-202
[10]   THE DISCRETE BESSEL TRANSFORM ALGORITHM [J].
LEMOINE, D .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (05) :3936-3944