Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints

被引:34
作者
de los Reyes, J. C. [1 ]
Troeltzsch, F.
机构
[1] EPN, Dept Math, Quito, Ecuador
[2] TU Berlin, Inst Math, Berlin, Germany
关键词
optimal control; Navier-Stokes equations; mixed control; state constraints; semi-smooth Newton methods;
D O I
10.1137/050646949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the distributed optimal control of the Navier-Stokes equations in the presence of pointwise mixed control-state constraints. After deriving a first order necessary condition, the regularity of the mixed constraint multiplier is investigated. Second order sufficient optimality conditions are studied as well. In the last part of the paper, a semismooth Newton method is applied for the numerical solution of the control problem. The convergence of the method is proved and numerical experiments are carried out.
引用
收藏
页码:604 / 629
页数:26
相关论文
共 28 条
[1]  
Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [DOI 10.1007/BF00271794, 10.1007/bf00271794]
[2]  
[Anonymous], ADV DES CONTROL
[3]   On the structure of Lagrange multipliers for state-constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SYSTEMS & CONTROL LETTERS, 2003, 48 (3-4) :169-176
[5]   BOUNDARY CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS WITH POINTWISE STATE CONSTRAINTS [J].
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (04) :993-1006
[6]   Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory [J].
Casas, E ;
Tröltzsch, F .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :406-431
[7]  
Casas E., 1995, IMA VOLUMES MATH ITS, V68, P127
[8]   A semi-smooth Newton method for regularized state-constrained optimal control of the Navier-Stokes equations [J].
de los Reyes, J. C. ;
Kunisch, K. .
COMPUTING, 2006, 78 (04) :287-309
[9]   A primal-dual active set method for bilaterally control constrained optimal control of the Navier-Stokes equations [J].
De los Reyes, JC .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (7-8) :657-683
[10]   A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations [J].
de los Reyes, JC ;
Kunisch, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (07) :1289-1316