CONSTRUCTION OF POSITIVITY PRESERVING NUMERICAL SCHEMES FOR SOME MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS

被引:13
作者
Halidias, Nikolaos [1 ]
机构
[1] Univ Aegean, Dept Math, Karlovassi 83200, Samos, Greece
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2015年 / 20卷 / 01期
关键词
Explicit numerical scheme; multidimensional super linear stochastic differential equations; positivity preserving; stochastic Predator-Prey model; STRONG-CONVERGENCE; SDES;
D O I
10.3934/dcdsb.2015.20.153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we work on the construction of positive preserving numerical schemes for a class of multidimensional stochastic differential equations. We use the semi discrete idea that we have proposed before proposing now a numerical scheme that preserves positivity on some multidimensional stochastic differential equations converging strongly in the mean square sense to the true solution.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 7 条
[1]   A novel approach to construct numerical methods for stochastic differential equations [J].
Halidias, Nikolaos .
NUMERICAL ALGORITHMS, 2014, 66 (01) :79-87
[2]   CONVERGENCE, NON-NEGATIVITY AND STABILITY OF A NEW MILSTEIN SCHEME WITH APPLICATIONS TO FINANCE [J].
Higham, Desmond J. ;
Mao, Xuerong ;
Szpruch, Lukasz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (08) :2083-2100
[3]   Strong convergence of Euler-type methods for nonlinear stochastic differential equations [J].
Higham, DJ ;
Mao, XR ;
Stuart, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) :1041-1063
[4]  
Hutzenthaler M., MEM AM MATH SOC
[5]   STRONG CONVERGENCE OF AN EXPLICIT NUMERICAL METHOD FOR SDES WITH NONGLOBALLY LIPSCHITZ CONTINUOUS COEFFICIENTS [J].
Hutzenthaler, Martin ;
Jentzen, Arnulf ;
Kloeden, Peter E. .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (04) :1611-1641
[6]   Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differential equations [J].
Liu, Wei ;
Mao, Xuerong .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :389-400
[7]   First order strong approximations of scalar SDEs defined in a domain [J].
Neuenkirch, Andreas ;
Szpruch, Lukasz .
NUMERISCHE MATHEMATIK, 2014, 128 (01) :103-136