Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification

被引:372
|
作者
Yang, Jingxiang [1 ,2 ]
Zhao, Yong-Qiang [1 ]
Chan, Jonathan Cheung-Wai [2 ]
机构
[1] Northwestern Polytech Univ, Key Lab Informat Fus Technol, Minist Educ China, Sch Automat, Xian 710072, Shaanxi, Peoples R China
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
来源
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Convolutional neural network (CNN); deeplearning; feature extraction; hyperspectral classification; transfer learning; FEATURE-EXTRACTION; REPRESENTATIONS; IMAGERY; NETWORKS;
D O I
10.1109/TGRS.2017.2698503
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Feature extraction is of significance for hyperspectral image (HSI) classification. Compared with conventional hand-crafted feature extraction, deep learning can automatically learn features with discriminative information. However, two issues exist in applying deep learning to HSIs. One issue is how to jointly extract spectral features and spatial features, and the other one is how to train the deep model when training samples are scarce. In this paper, a deep convolutional neural network with two-branch architecture is proposed to extract the joint spectral-spatial features from HSIs. The two branches of the proposed network are devoted to features from the spectral domain as well as the spatial domain. The learned spectral features and spatial features are then concatenated and fed to fully connected layers to extract the joint spectral-spatial features for classification. When the training samples are limited, we investigate the transfer learning to improve the performance. Low and mid-layers of the network are pretrained and transferred from other data sources; only top layers are trained with limited training samples extracted from the target scene. Experiments on Airborne Visible/Infrared Imaging Spectrometer and Reflective Optics System Imaging Spectrometer data demonstrate that the learned deep joint spectral-spatial features are discriminative, and competitive classification results can be achieved when compared with state-of-the-art methods. The experiments also reveal that the transferred features boost the classification performance.
引用
收藏
页码:4729 / 4742
页数:14
相关论文
共 50 条
  • [41] A SPECTRAL-SPATIAL AUGMENTED ACTIVE LEARNING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Falahatnejad, Sh.
    Karami, A.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 151 - 158
  • [42] Hyperspectral Images Classification by Spectral-Spatial Processing
    Imani, Maryam
    Ghassemian, Hassan
    2016 8TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2016, : 456 - 461
  • [43] Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification
    Xu, Huilin
    He, Wei
    Zhang, Liangpei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] A Spectral-Spatial Multicriteria Active Learning Technique for Hyperspectral Image Classification
    Patra, Swarnajyoti
    Bhardwaj, Kaushal
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5213 - 5227
  • [45] Embedding Learning on Spectral-Spatial Graph for Semisupervised Hyperspectral Image Classification
    Cao, Jiayan
    Wang, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1805 - 1809
  • [46] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [47] Spectral-spatial classification of hyperspectral images using different spatial features and composite kernels
    Ben Salem, Rafika
    Ettabaa, Karim Saheb
    Hamdi, Mohamed Ali
    2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,
  • [48] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [49] AN ENSEMBLE ACTIVE LEARNING APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Zhang, Zhou
    Crawford, Melba M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4963 - 4966
  • [50] Multicomponent hyperspectral grade evaluation of ilmenite using spectral-spatial joint features
    Yi, Xinqiang
    Chen, Manjiao
    Guo, Wang
    Hu, Xinjun
    Zhang, Jiahong
    Fei, Xue
    Han, Lipeng
    Tian, Jianping
    ANALYTICAL METHODS, 2023, 15 (38) : 5050 - 5062