Structural Evolution and Dynamics of the p53 Proteins

被引:41
|
作者
Chillemi, Giovanni [1 ]
Kehrloesser, Sebastian [2 ]
Bernassola, Francesca [3 ]
Desideri, Alessandro [4 ]
Doetsch, Volker [2 ]
Levine, Arnold J. [5 ,6 ]
Melino, Gerry [7 ]
机构
[1] CINECA, SCAI SuperComp Applicat & Innovat Dept, I-00185 Rome, Italy
[2] Goethe Univ, Inst Biophys Chem, D-60438 Frankfurt, Germany
[3] Univ Roma Tor Vergata, Dept Expt Med & Surg, I-00133 Rome, Italy
[4] Univ Roma Tor Vergata, Biol Dept, I-00133 Rome, Italy
[5] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
[6] Rutgers Canc Inst New Jersey, New Brunswick, NJ 08903 USA
[7] Univ Leicester, Toxicol Unit, Med Res Council, Leicester LE1 9HN, Leics, England
来源
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE | 2017年 / 7卷 / 04期
基金
英国医学研究理事会;
关键词
TUMOR-SUPPRESSOR P53; DNA-BINDING DOMAIN; C-TERMINAL DOMAIN; TETRAMERIZATION DOMAIN; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; MUTANT P53; MATERNAL REPRODUCTION; ENZYME SPECIFICITY; FUNCTIONAL DOMAIN;
D O I
10.1101/cshperspect.a028308
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the K-OFF over K-ON.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A molecular dynamics and docking study to screen anti-cancer compounds targeting mutated p53
    Shah, Hetal Damani
    Saranath, Dhananjaya
    Murthy, Vinuthaa
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (06) : 2407 - 2416
  • [42] Tetramer Formation of Tumor Suppressor Protein p53: Structure, Function, and Applications
    Kamada, Rui
    Toguchi, Yu
    Nomura, Takao
    Imagawa, Toshiaki
    Sakaguchi, Kazuyasu
    BIOPOLYMERS, 2016, 106 (04) : 598 - 612
  • [43] Mitochondrial Liaisons of p53
    Galluzzi, Lorenzo
    Morselli, Eugenia
    Kepp, Oliver
    Vitale, Ilio
    Pinti, Marcello
    Kroemer, Guido
    ANTIOXIDANTS & REDOX SIGNALING, 2011, 15 (06) : 1691 - 1714
  • [44] Modes of p53 Regulation
    Kruse, Jan-Philipp
    Gu, Wei
    CELL, 2009, 137 (04) : 609 - 622
  • [45] The mitochondrial p53 pathway
    Vaseva, Angelina V.
    Moll, Ute M.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (05): : 414 - 420
  • [46] p53 regulation by ubiquitin
    Brooks, Christopher L.
    Gu, Wei
    FEBS LETTERS, 2011, 585 (18): : 2803 - 2809
  • [47] p53 Aggregates Penetrate Cells and Induce the Co-Aggregation of Intracellular p53
    Forget, Karolyn J.
    Tremblay, Guillaume
    Roucou, Xavier
    PLOS ONE, 2013, 8 (07):
  • [48] Structural basis for p53 binding to its nucleosomal target DNA sequence
    Nishimura, Masahiro
    Takizawa, Yoshimasa
    Nozawa, Kayo
    Kurumizaka, Hitoshi
    PNAS NEXUS, 2022, 1 (04):
  • [49] Intracellular displacement of p53 using transactivation domain (p53 TAD) specific nanobodies
    Steels, Anneleen
    Verhelle, Adriaan
    Zwaenepoel, Olivier
    Gettemans, Jan
    MABS, 2018, 10 (07) : 1045 - 1059
  • [50] Exploring the multiple roles of guardian of the genome: P53
    Feroz, Wasim
    Sheikh, Arwah Mohammad Ali
    EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS, 2020, 21 (01)