The effect of assuming the identity as a generator on the length of the matrix algebra

被引:6
作者
Laffey, Thomas [1 ]
Markova, Olga [2 ]
Smigoc, Helena [1 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Algebra, Moscow 119991, Russia
基金
爱尔兰科学基金会; 俄罗斯基础研究基金会;
关键词
Finitely generated algebra; Lengths of Algebras; COMPLEX MATRICES; IRREDUCIBLE PAIRS; SIZE;
D O I
10.1016/j.laa.2015.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M-n(F) be the algebra of n x n matrices and let S be a generating set of M-n(F) as an F-algebra. The length of a finite generating set S of M-n(F) is the smallest number k such that words of length not greater than k generate M-n(F) as a vector space. Traditionally the identity matrix is assumed to be automatically included in all generating sets S and counted as a word of length 0. In this paper we discuss how the problem changes if this assumption is removed. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:378 / 393
页数:16
相关论文
共 14 条
[1]   Lengths of finite dimensional representations of PBW algebras [J].
Constantine, D ;
Darnall, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 :175-181
[2]  
GAINES FJ, 1983, LINEAR ALGEBRA APPL, V52-3, P289
[3]  
Guterman A. B., 2013, J MATH SCI N Y, V419, p[52, 400]
[4]   Commutative matrix subalgebras and length function [J].
Guterman, A. E. ;
Markova, O. V. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (07) :1790-1805
[5]   ALGEBRAS GENERATED BY 2 IDEMPOTENTS [J].
LAFFEY, TJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 37 (APR) :45-53
[6]   ON THE LENGTHS OF PAIRS OF COMPLEX MATRICES OF SIZE SIX [J].
Lambrou, M. S. ;
Longstaff, W. E. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) :177-201
[7]   On the lengths of pairs of complex matrices of size at most five [J].
Longstaff, W. E. ;
Niemeyer, A. C. ;
Panaia, Oreste .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (03) :461-472
[8]   ON THE LENGTHS OF IRREDUCIBLE PAIRS OF COMPLEX MATRICES [J].
Longstaff, W. E. ;
Rosenthal, Peter .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) :3769-3777
[9]   Burnside's theorem: irreducible pairs of transformations [J].
Longstaff, WE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 382 :247-269
[10]  
Markova O. V., 2011, FUNDAM PRIKL MAT, V17, p[65, 687]