In situ control of effective Kerr nonlinearity with Pockels integrated photonics

被引:32
作者
Cui, Chaohan [1 ]
Zhang, Liang [1 ]
Fan, Linran [1 ]
机构
[1] Univ Arizona, James C Wyant Coll Opt Sci, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
CASCADED 2ND-ORDER NONLINEARITY; GENERATION; COMPACT;
D O I
10.1038/s41567-022-01542-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nanophotonic cavities with Kerr nonlinearities are a versatile platform both to explore fundamental physics and to develop practical photonic technologies(1-3). This is possible because nanoscale structures allow precise dispersion control and provide significant field enhancement. To improve the functionality and performance of photonic devices even further, direct control of the Kerr nonlinearity would be desirable. Here, we report the in situ control of integrated Kerr nonlinearity through its interplay with the cascaded second-order nonlinear process(4-9). We observe a Fano resonance in the nonlinear spectrum rather than in the linear transmission(10), confirming the quantum interference between competing optical nonlinear pathways. The Kerr nonlinearity is tuned over a dynamic range of 10 dB without modifying the photonic structure. We also demonstrate the suppression of the intrinsic material nonlinearity and we use the tunable nonlinearity to control the spectral brightness and coincidence-to-accidental ratio of single-photon generation.
引用
收藏
页码:497 / +
页数:6
相关论文
共 52 条
[1]   Degenerate four-wave mixing in noncentrosymmetric materials [J].
Biaggio, I .
PHYSICAL REVIEW A, 2001, 64 (06) :13
[2]   Cascaded contributions to degenerate four-wave mixing in an acentric organic crystal [J].
Bosshard, C ;
Biaggio, I ;
St Fischer ;
Follonier, S ;
Günter, P .
OPTICS LETTERS, 1999, 24 (04) :196-198
[3]   Passive CPHASE Gate via Cross-Kerr Nonlinearities [J].
Brod, Daniel J. ;
Combes, Joshua .
PHYSICAL REVIEW LETTERS, 2016, 117 (08)
[4]   Universal linear optics [J].
Carolan, Jacques ;
Harrold, Christopher ;
Sparrow, Chris ;
Martin-Lopez, Enrique ;
Russell, Nicholas J. ;
Silverstone, Joshua W. ;
Shadbolt, Peter J. ;
Matsuda, Nobuyuki ;
Oguma, Manabu ;
Itoh, Mikitaka ;
Marshall, Graham D. ;
Thompson, Mark G. ;
Matthews, Jonathan C. F. ;
Hashimoto, Toshikazu ;
O'Brien, Jeremy L. ;
Laing, Anthony .
SCIENCE, 2015, 349 (6249) :711-716
[5]   Ultra-low-loss integrated visible photonics using thin-film lithium niobate [J].
Desiatov, Boris ;
Shams-Ansari, Amirhassan ;
Zhang, Mian ;
Wang, Cheng ;
Loncar, Marko .
OPTICA, 2019, 6 (03) :380-384
[6]   Low power and compact reconfigurable multiplexing devices based on silicon microring resonators [J].
Dong, Po ;
Qian, Wei ;
Liang, Hong ;
Shafiiha, Roshanak ;
Feng, Ning-Ning ;
Feng, Dazeng ;
Zheng, Xuezhe ;
Krishnamoorthy, Ashok V. ;
Asghari, Mehdi .
OPTICS EXPRESS, 2010, 18 (10) :9852-9858
[7]   Self-phase modulation compensation in a regenerative amplifier using cascaded second-order nonlinearities [J].
Dorrer, C. ;
Roides, R. G. ;
Bromage, J. ;
Zuegel, J. D. .
OPTICS LETTERS, 2014, 39 (15) :4466-4469
[8]   Approaching the Non-Linear Shannon Limit [J].
Ellis, Andrew D. ;
Zhao, Jian ;
Cotter, David .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (04) :423-433
[9]  
Elshaari AW, 2020, NAT PHOTONICS, V14, P285, DOI 10.1038/s41566-020-0609-x
[10]   Spectrotemporal shaping of itinerant photons via distributed nanomechanics [J].
Fan, Linran ;
Zou, Chang-Ling ;
Zhu, Na ;
Tang, Hong X. .
NATURE PHOTONICS, 2019, 13 (05) :323-+