Towards high-performance lithium metal batteries: sol electrolyte generated with mesoporous silica

被引:11
|
作者
Zhang, Qiang [1 ]
Wu, Xue-Yan [1 ]
Wang, Kai-Xue [1 ]
Chen, Jie-Sheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Lithium anode; SBA-15; Sol electrolyte; Protective layers; Dendrite-free deposition; FLUOROETHYLENE CARBONATE; ION; ANODE; SULFONE; CELLS;
D O I
10.1016/j.cej.2022.137421
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-energy lithium metal batteries are considered as a promising alternative for next-generation energy storage systems. However, the uncontrolled lithium-dendrite growth due to the inhomogeneous lithium electrochemical deposition prevents lithium batteries from commercial application. Herein, a sol electrolyte was prepared by the addition of mesoporous silica, SBA-15 to the liquid ester-based LiPF6 electrolyte to induce the formation of a dense protective layer on the lithium metal surface and inhibit the uncontrolled growth of lithium dendrites and the electrolyte consumption. Mesoporous silica with ordered hexagonal nanochannels and abundant surface silicon hydroxyl groups not only facilitates the formation of the sol electrolyte, but also adsorbs the electrolyte, leading to homogeneous lithium ion distribution. The sol electrolytes would generate a dense protective layer on the lithium metal and a robust CEI film on the surface of the cathode materials through an in situ gelation process, suppressing the uncontrolled lithium dendrite growth and improving the stability of the electrolyte. Consequently, high electrochemical performance was demonstrated with the Li parallel to TiNi0.5Co0.2Mn0.3O2 (NCM523) full cells with the sol electrolyte. This work provides a new strategy for improving the performance of lithium metal batteries through the formation of sol electrolytes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Tuning Li Nucleation by a Hybrid Lithiophilic Protective Layer for High-Performance Lithium Metal Batteries
    Zhao, Kaixin
    Zhang, Lirong
    Jin, Qi
    Xiao, Junpeng
    Wu, Lili
    Zhang, Xitian
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (02) : 3089 - 3098
  • [32] In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
    Wang, Fuhe
    Liu, Honghao
    Guo, Yaqing
    Han, Qigao
    Lou, Ping
    Li, Long
    Jiang, Jianjie
    Cheng, Shijie
    Cao, Yuancheng
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (01)
  • [33] Lithiophilic bimetallic selenides in frameworks enable excellent lithium-ion conduction solid electrolyte interphase for high-performance lithium metal batteries
    Wang, Jianhua
    Dong, Yan
    Li, Longfei
    Jiang, Jingjing
    Fan, Lele
    Kong, Fanjie
    Wu, Qianhui
    Ni, Lubin
    Diao, Guowang
    Chen, Ming
    JOURNAL OF POWER SOURCES, 2023, 573
  • [34] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [35] Microrod Patterned Lithium Metal Surface for High-performance Solid-state Lithium Batteries
    Zhang, Xiang
    Sun, Chunwen
    CHEMISTRY LETTERS, 2022, 51 (08) : 891 - 893
  • [36] Boron nitride as an ?all-in-one? gelator to immobilize concentrated sulfone electrolyte towards high performance lithium metal batteries
    Li, Mingnan
    Gao, Yang
    Yu, Da
    Hu, Zewei
    Liu, Zhaoen
    Wang, Xiwen
    Weng, Qunhong
    Chen, Yufang
    Zhang, Yan
    Zhang, Shiguo
    ENERGY STORAGE MATERIALS, 2023, 59
  • [37] High-performance lithium metal batteries enabled by a nano-sized garnet solid-state electrolyte modified separator
    Yu, Kai
    Zeng, Huipeng
    Ma, Jun
    Jiang, Yidong
    Li, Huiyun
    Zhang, Ludan
    Zhang, Qiangqiang
    Shan, Xuyi
    Li, Tingting
    Wu, Xiaoqi
    Xu, Hongli
    Huang, Wei
    Wang, Chaoyang
    Chi, Shang-Sen
    Wang, Jun
    Gong, Qing
    Deng, Yonghong
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [38] Clarifying the Role of Ordered Mesoporous Carbon on a Separator for High-Performance Lithium-Sulfur Batteries
    Kwon, Yelim
    Choi, Yun Seok
    Wang, Qian
    Song, Lianghao
    Kim, Hansol
    Bulakhe, Ravindra N.
    Kim, Ji Man
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (19) : 9975 - 9984
  • [39] FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries
    Liu, Heguang
    Jing, Ruixuan
    Wang, Zilu
    You, Caiyin
    MRS COMMUNICATIONS, 2021, 11 (04) : 418 - 424
  • [40] Anthraquinone-Based Silicate Covalent Organic Frameworks as Solid Electrolyte Interphase for High-Performance Lithium-Metal Batteries
    Li, Chen
    Wang, Dan-Dong
    Poon Ho, Gerald Siu Hang
    Zhang, Zhengyang
    Huang, Jun
    Bang, Ki-Taek
    Lau, Chun Yin
    Leu, Shao-Yuan
    Wang, Yanming
    Kim, Yoonseob
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (45) : 24603 - 24614