Affine linear sieve, expanders, and sum-product

被引:95
作者
Bourgain, Jean [3 ]
Gamburd, Alex [2 ]
Sarnak, Peter [1 ,3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
SUBGROUPS; NUMBER; FIELDS; SET;
D O I
10.1007/s00222-009-0225-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O be an orbit in Z(n) of a finitely generated subgroup Lambda of GL (n) (Z) whose Zariski closure Zcl(Lambda) is suitably large (e.g. isomorphic to SL2). We develop a Brun combinatorial sieve for estimating the number of points on O at which a fixed integral polynomial is prime or has few prime factors, and discuss applications to classical problems, including Pythagorean triangles and integral Apollonian packings. A fundamental role is played by the expansion property of the "congruence graphs" that we associate with O. This expansion property is established when Zcl(Lambda) = SL2, using crucially sum-product theorem in Z/qaZ sign for q square-free.
引用
收藏
页码:559 / 644
页数:86
相关论文
共 64 条
[1]  
[Anonymous], 1973, J PURE APPL ALGEBRA
[2]  
[Anonymous], ACTA MATH
[3]  
[Anonymous], 2002, ALGEBRA
[4]  
[Anonymous], 1985, Products of Random Matrices with Applications to Schrodinger Operators
[5]  
BOMBIERI E., 2006, HEIGHTS DIOPHANTINE
[6]   ARITHMETIC SUBGROUPS OF ALGEBRAIC GROUPS [J].
BOREL, A ;
HARISHCHANDRA .
ANNALS OF MATHEMATICS, 1962, 75 (03) :485-&
[7]   Mordell's exponential sum estimate revisited [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) :477-499
[8]   Estimates for the number of sums and products and for exponential sums in fields of prime order [J].
Bourgain, J. ;
Glibichuk, A. A. ;
Konyagin, S. V. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :380-398
[9]   Exponential sum estimates over subgroups of Zq*, q arbitrary [J].
Bourgain, J. .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 97 (1) :317-355
[10]  
Bourgain J, 2006, GEOM FUNCT ANAL, V16, P327, DOI 10.1007/s00039-006-0558-7