Bayes Synthesis of Linear Nonstationary Stochastic Systems by Wavelet Canonical Expansions

被引:3
作者
Sinitsyn, Igor [1 ,2 ]
Sinitsyn, Vladimir [1 ,2 ]
Korepanov, Eduard [1 ]
Konashenkova, Tatyana [1 ]
机构
[1] Russian Acad Sci FRC CSC RAS, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
[2] Natl Res Univ, Moscow Aviat Inst, Moscow 125993, Russia
关键词
Bayes criterion; Haar wavelets; loss function; mean risk; observable stochastic systems (OStS); stochastic process (StP); wavelet canonical expansion (WLCE); NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; ORTHONORMAL BASES;
D O I
10.3390/math10091517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to analysis and optimization problems of stochastic systems based on wavelet canonical expansions. Basic new results: (i) for general Bayes criteria, a method of synthesized methodological support and a software tool for nonstationary normal (Gaussian) linear observable stochastic systems by Haar wavelet canonical expansions are presented; (ii) a method of synthesis of a linear optimal observable system for criterion of the maximal probability that a signal will not exceed a particular value in absolute magnitude is given. Applications: wavelet model building of essentially nonstationary stochastic processes and parameters calibration.
引用
收藏
页数:14
相关论文
共 31 条
[1]  
Arora S., 2014, International Journal of Computer Applications, V97, P33, DOI 10.5120/17108-7759
[2]  
Cattani C., 2004, Proceedings of the Estonian Academy of Sciences, Physics, Mathematics, V53, P45, DOI [10.3176/phys.math.2004.1.04, DOI 10.3176/PHYS.MATH.2004.1.04]
[3]   Haar wavelet method for solving lumped and distributed-parameter systems [J].
Chen, CF ;
Hsiao, CH .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (01) :87-94
[4]  
Chui C. K., 1992, INTRO WAVELETS, V1
[5]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[6]  
Daubechies I., 1992, CBMS NSF REGIONAL C, DOI [10.1137/1.9781611970104, DOI 10.1137/1.9781611970104]
[7]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[8]  
HARIHARAN G., 2013, World Applied Sciences Journal, V23, P01
[9]   Numerical solution of time-varying functional differential equations via Haar wavelets [J].
Hsiao, C. H. ;
Wu, S. P. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :1049-1058
[10]   State analysis of linear time delayed systems via Haar wavelets [J].
Hsiao, CH .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 44 (05) :457-470