Challenges and Trends of SRAM-Based Computing-In-Memory for AI Edge Devices

被引:131
作者
Jhang, Chuan-Jia [1 ]
Xue, Cheng-Xin [1 ]
Hung, Je-Min [1 ]
Chang, Fu-Chun [1 ]
Chang, Meng-Fan [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
关键词
SRAM cells; Computer architecture; Arrays; Common Information Model (computing); Artificial intelligence; Performance evaluation; Microprocessors; Artificial intelligence (AI); Internet of Things (IoT); edge computation; computing-in-memory (CIM); static random access memory (SRAM); SUBTHRESHOLD SRAM; MACRO; TCAM; IMPROVEMENT; SCHEME; RERAM; CMOS; CELL;
D O I
10.1109/TCSI.2021.3064189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When applied to artificial intelligence edge devices, the conventionally von Neumann computing architecture imposes numerous challenges (e.g., improving the energy efficiency), due to the memory-wall bottleneck involving the frequent movement of data between the memory and the processing elements (PE). Computing-in-memory (CIM) is a promising candidate approach to breaking through this so-called memory wall bottleneck. SRAM cells provide unlimited endurance and compatibility with state-of-the-art logic processes. This paper outlines the background, trends, and challenges involved in the further development of SRAM-CIM macros. This paper also reviews recent silicon-verified SRAM-CIM macros designed for logic and multiplication-accumulation (MAC) operations.
引用
收藏
页码:1773 / 1786
页数:14
相关论文
共 50 条
  • [1] Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and Its Application to Sparse Coding
    Agarwal, Sapan
    Quach, Tu-Thach
    Parekh, Ojas
    Hsia, Alexander H.
    DeBenedictis, Erik P.
    James, Conrad D.
    Marinella, Matthew J.
    Aimone, James B.
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 9
  • [2] Arsovski I, 2017, ISSCC DIG TECH PAP I, P212, DOI 10.1109/ISSCC.2017.7870336
  • [3] Biswas A, 2018, ISSCC DIG TECH PAP I, P488, DOI 10.1109/ISSCC.2018.8310397
  • [4] Bose SK, 2019, CONF REC ASILOMAR C, P1522, DOI [10.1109/IEEECONF44664.2019.9048891, 10.1109/ieeeconf44664.2019.9048891]
  • [5] A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS
    Chang, Ik Joon
    Kim, Jae-Joon
    Park, Sang Phill
    Roy, Kaushik
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (02) : 650 - 658
  • [6] Chang MF, 2015, ISSCC DIG TECH PAP I, V58, P318, DOI 10.1109/ISSCC.2015.7063054
  • [7] Chang MF, 2015, ISSCC DIG TECH PAP I, V58, P314
  • [8] A Sub-0.3 V Area-Efficient L-Shaped 7T SRAM With Read Bitline Swing Expansion Schemes Based on Boosted Read-Bitline, Asymmetric-VTH Read-Port, and Offset Cell VDD Biasing Techniques
    Chang, Meng-Fan
    Chen, Ming-Pin
    Chen, Lai-Fu
    Yang, Shu-Meng
    Kuo, Yao-Jen
    Wu, Jui-Jen
    Su, Hsiu-Yun
    Chu, Yuan-Hua
    Wu, Wen-Ching
    Yang, Tzu-Yi
    Yamauchi, Hiroyuki
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (10) : 2558 - 2569
  • [9] Design and Iso-Area Vmin Analysis of 9T Subthreshold SRAM With Bit-Interleaving Scheme in 65-nm CMOS
    Chang, Ming-Hung
    Chiu, Yi-Te
    Hwang, Wei
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (07) : 429 - 433
  • [10] CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors
    Chen, Wei-Hao
    Dou, Chunmeng
    Li, Kai-Xiang
    Lin, Wei-Yu
    Li, Pin-Yi
    Huang, Jian-Hao
    Wang, Jing-Hong
    Wei, Wei-Chen
    Xue, Cheng-Xin
    Chiu, Yen-Cheng
    King, Ya-Chin
    Lin, Chorng-Jung
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Yang, J. Joshua
    Ho, Mon-Shu
    Chang, Meng-Fan
    [J]. NATURE ELECTRONICS, 2019, 2 (09) : 420 - 428