Nonarchimedean quadratic Lagrange spectra and continued fractions in power series fields

被引:1
作者
Bugeaud, Yann [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词
Lagrange spectrum; continued fractions; power series fields; DIOPHANTINE APPROXIMATION; HALLS RAY; MARKOV;
D O I
10.4064/fm622-2-2019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of order a positive power q of a prime number. We study the nonarchimedean quadratic Lagrange spectrum defined by Parkkonen and Paulin by considering the approximation by elements of the orbit of a given quadratic power series in F-q ((Y-1)), for the action by homographies and anti-homographies of PGL(2)(F-q[Y]) on F-q((Y-1)) boolean OR {infinity}. While Parkkonen and Paulin's approach used geometric methods of group actions on Bruhat-Tits trees, ours is based on the theory of continued fractions in power series fields.
引用
收藏
页码:171 / 189
页数:19
相关论文
共 28 条
[1]  
[Anonymous], 1989, Math. Surveys Monogr.
[2]  
Broise-Alamichel A, 2019, PROGR MATH, V329
[3]  
Bruijn N. D., 1946, Nederl. Akad. Wetensch., Proc., V49, P461
[4]   On the quadratic Lagrange spectrum [J].
Bugeaud, Yann .
MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) :985-999
[5]   Continued fractions with low complexity: transcendence measures and quadratic approximation [J].
Bugeaud, Yann .
COMPOSITIO MATHEMATICA, 2012, 148 (03) :718-750
[6]   Hall's ray in inhomogeneous diophantine approximation [J].
Cusick, TW ;
Moran, W ;
Pollington, AD .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :42-50
[7]   CONNECTION BETWEEN LAGRANGE AND MARKOV SPECTRA [J].
CUSICK, TW .
DUKE MATHEMATICAL JOURNAL, 1975, 42 (03) :507-517
[8]  
de Mathan B., 1970, B SOC MATH FRANCE S, V21
[9]  
FREIMAN G.A., 1975, Diophantine approximations and geometry of numbers. (Markov problem)
[10]   Attainable numbers and the Lagrange spectrum [J].
Gayfulin, Dmitry .
ACTA ARITHMETICA, 2017, 179 (02) :185-199