Dynamics of Coupled Lithium/Electron Diffusion in TiO2 Polymorphs

被引:52
作者
Kerisit, Sebastien [1 ]
Rosso, Kevin M. [1 ]
Yang, Zhenguo [1 ]
Liu, Jun [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
HIGH LITHIUM ELECTROACTIVITY; NANOCRYSTALLINE RUTILE TIO2; LI+ ION INSERTION; ELECTRON-TRANSFER; TITANIUM-DIOXIDE; ANATASE TIO2; POLARON MOTION; 1ST PRINCIPLES; CHARGE-TRANSFER; ATOMISTIC SIMULATION;
D O I
10.1021/jp9064517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations were performed with a potential shell model to investigate the diffusion of lithium ions and electron polarons in rutile and anatase. Simulations of an isolated lithium ion in rutile predict fast diffusion in the c channels with an activation energy of 0.05 eV, which corresponds to a jump rate of 4 x 10(11) s(-1) and a diffusion coefficient of 9 x 10(-5) cm(2).s(-1) at room temperature. In anatase, the activation energies for intra- and interoctahedron lithium hopping are 0.02 and 0.39 eV, respectively, and the lithium diffusion coefficient is 4-5 orders of magnitude slower than in rutile. When in the presence of an electron polaron, lithium hopping is predicted to be affected up to four hops away. The effects are more pronounced in rutile; whereby the first energy minimum along the c direction is absent due to the strong lithium-electron electrostatic interactions along the open c channels. Combining the lithium and electron polaron hopping rates, a Coupled diffusion mechanism emerges whereby the electron polarons hop rapidly back and forth around the lithium ions. This process can lead to the occurrence of an instantaneous driving force for lithium hopping. The lithium ion-electron polaron binding energies are found to be large, with a stronger binding in rutile than in as 0.45 and 0.28 eV, respectively, Suggesting that, at low lithium mole fractions, lithium ions and electron polarons will form strongly correlated pairs.
引用
收藏
页码:20998 / 21007
页数:10
相关论文
共 90 条
[1]  
AJAYI OB, 1976, J PHYS CHEM SOLIDS, V37, P167, DOI 10.1016/0022-3697(76)90156-6
[2]   POLARONS IN CRYSTALLINE AND NON-CRYSTALLINE MATERIALS [J].
AUSTIN, IG ;
MOTT, NF .
ADVANCES IN PHYSICS, 1969, 18 (71) :41-+
[3]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[4]   ANATASE AS A CATHODE MATERIAL IN LITHIUM-ORGANIC ELECTROLYTE RECHARGEABLE BATTERIES [J].
BONINO, F ;
BUSANI, L ;
LAZZARI, M ;
MANSTRETTA, M ;
RIVOLTA, B ;
SCROSATI, B .
JOURNAL OF POWER SOURCES, 1981, 6 (03) :261-270
[5]   Impact of nanosizing on lithiated rutile TiO2 [J].
Borghols, Wouter J. H. ;
Wagemaker, Marnix ;
Lafont, Ugo ;
Kelder, Erik M. ;
Mulder, Fokko M. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2949-2955
[6]  
Born M., 1954, DYNAMICAL THEORY CRY
[7]   A SEMI-CLASSICAL TREATMENT OF ELECTRON-EXCHANGE REACTIONS - APPLICATION TO THE HEXAAQUOIRON(II)-HEXAAQUOIRON(III) SYSTEM [J].
BRUNSCHWIG, BS ;
LOGAN, J ;
NEWTON, MD ;
SUTIN, N .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (18) :5798-5809
[8]   THE CRYSTAL-STRUCTURES OF THE LITHIUM-INSERTED METAL-OXIDES LI0.5TIO2 ANATASE, LITI2O4 SPINEL, AND LI2TI2O4 [J].
CAVA, RJ ;
MURPHY, DW ;
ZAHURAK, S ;
SANTORO, A ;
ROTH, RS .
JOURNAL OF SOLID STATE CHEMISTRY, 1984, 53 (01) :64-75
[9]   Electron transport via polaron hopping in bulk TiO2:: A density functional theory characterization [J].
Deskins, N. Aaron ;
Dupuis, Michel .
PHYSICAL REVIEW B, 2007, 75 (19)
[10]   THEORY OF THE DIELECTRIC CONSTANTS OF ALKALI HALIDE CRYSTALS [J].
DICK, BG ;
OVERHAUSER, AW .
PHYSICAL REVIEW, 1958, 112 (01) :90-103