Big Data Analysis and Machine Learning in Intensive Care Units

被引:25
作者
Nunez Reiz, A. [1 ]
Armengol de la Hoz, M. A. [2 ,3 ,4 ]
Sanchez Garcia, M. [1 ]
机构
[1] Hosp Univ Clin San Carlos, Serv Med Intens, Madrid, Spain
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Anesthesia Crit Care & Pain Med, Boston, MA USA
[3] MIT, Inst Med Engn & Sci, Lab Computat Physiol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Univ Politecn Madrid, ETSI Telecomunicac, Biomed Technol Ctr CTB, Biomed Engn & Telemed Grp, Madrid, Spain
关键词
Big Data Analysis; Machine Learning; Artificial intelligence; Secondary electronic health record data analysis;
D O I
10.1016/j.medin.2018.10.007
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Intensive care is an ideal environment for the use of Big Data Analysis (BDA) and Machine Learning (ML), due to the huge amount of information processed and stored in electronic format in relation to such care. These tools can improve our clinical research capabilities and clinical decision making in the future. The present study reviews the foundations of BDA and ML, and explores possible applications in our field from a clinical viewpoint. We also suggest potential strategies to optimize these new technologies and describe a new kind of hybrid healthcare-data science professional witha linking role between clinicians and data. (C) 2018 Elsevier Espana, S.L.U. y SEMICYUC. All rights reserved.
引用
收藏
页码:416 / 426
页数:11
相关论文
共 35 条
[1]   Early biliary drainage is associated with favourable outcomes in critically-ill patients with acute cholangitis [J].
Aboelsoud, Mohammed ;
Siddique, Osama ;
Morales, Alexander ;
Seol, Young ;
Al-Qadi, Mazen .
GASTROENTEROLOGY REVIEW-PRZEGLAD GASTROENTEROLOGICZNY, 2018, 13 (01) :16-21
[2]   Tethered to the EHR: Primary Care Physician Workload Assessment Using EHR Event Log Data and TimeMotion Observations [J].
Arndt, Brian G. ;
Beasley, John W. ;
Watkinson, Michelle D. ;
Temte, Jonathan L. ;
Tuan, Wen-Jan ;
Sinsky, Christine A. ;
Gilchrist, Valerie J. .
ANNALS OF FAMILY MEDICINE, 2017, 15 (05) :419-426
[3]   Using electronic health record collected clinical variables to predict medical intensive care unit mortality [J].
Calvert, Jacob ;
Mao, Qingqing ;
Hoffman, Jana L. ;
Jay, Melissa ;
Desautels, Thomas ;
Mohamadlou, Hamid ;
Chettipally, Uli ;
Das, Ritankar .
ANNALS OF MEDICINE AND SURGERY, 2016, 11 :52-57
[4]   "Big Data" in the Intensive Care Unit Closing the Data Loop [J].
Celi, Leo Anthony ;
Mark, Roger G. ;
Stone, David J. ;
Montgomery, Robert A. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187 (11) :1157-1160
[5]   TIDA: A Spanish EHR Semantic Search Engine [J].
Costumero, Roberto ;
Gonzalo, Consuelo ;
Menasalvas, Ernestina .
8TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2014), 2014, 294 :235-242
[6]   A formal definition of Big Data based on its essential features [J].
De Mauro, Andrea ;
Greco, Marco ;
Grimaldi, Michele .
LIBRARY REVIEW, 2016, 65 (03) :122-135
[7]   Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach [J].
Desautels, Thomas ;
Das, Ritankar ;
Calvert, Jacob ;
Trivedi, Monica ;
Summers, Charlotte ;
Wales, David J. ;
Ercole, Ari .
BMJ OPEN, 2017, 7 (09)
[8]   Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach [J].
Desautels, Thomas ;
Calvert, Jacob ;
Hoffman, Jana ;
Jay, Melissa ;
Kerem, Yaniv ;
Shieh, Lisa ;
Shimabukuro, David ;
Chettipally, Uli ;
Feldman, Mitchell D. ;
Barton, Chris ;
Wales, David J. ;
Das, Ritankar .
JMIR MEDICAL INFORMATICS, 2016, 4 (03) :67-81
[9]   Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database [J].
Feng, Mengling ;
McSparron, Jakob I. ;
Kien, Dang Trung ;
Stone, David J. ;
Roberts, David H. ;
Schwartzstein, Richard M. ;
Vieillard-Baron, Antoine ;
Celi, Leo Anthony .
INTENSIVE CARE MEDICINE, 2018, 44 (06) :884-892
[10]   Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives [J].
Gehrmann, Sebastian ;
Dernoncourt, Franck ;
Li, Yeran ;
Carlson, Eric T. ;
Wu, Joy T. ;
Welt, Jonathan ;
Foote, John, Jr. ;
Moseley, Edward T. ;
Grant, David W. ;
Tyler, Patrick D. ;
Celi, Leo A. .
PLOS ONE, 2018, 13 (02)